期刊文献+

热红外图像序列中基于KCF和Mean-Shift定位的目标跟踪方法 被引量:1

Target Tracking Method Based on KCF and Mean-Shift Positioning in Thermal Infrared Image Sequence
下载PDF
导出
摘要 针对热红外图像低信噪比(SNR)特性,提出了一种判别式热红外目标跟踪方法。首先,通过自适应组合核化相关滤波器(KCF)来获取目标位置,使用最有区别的特征集梯度和信道编码强度特征训练滤波器;然后,将经过训练的滤波器与感兴趣区域相关联,并将输出响应自适应地组合在一起,基于峰值定位目标。使用AdaBoost分类器对包含目标像素和背景像素的图像块进行训练,以分割连续帧中的对象;最后,通过Mean-Shift均值漂移算法寻找峰值以获得最优位置。对LTIR数据集中13个具有挑战性的红外视频进行了实验,结果显示提出的跟踪器在平均中心位置误差、距离精度和重叠精度等方面均优于其他跟踪器。 Aiming at the low signal-to-noise ratio(SNR)of thermal infrared images,a discriminant thermal infrared target tracking method is proposed.First,the target position is obtained by adaptively combining kerfization correlation filters(KCF),and the filters are trained using the most distinctive feature set gradients and channel coding strength characteristics.Then,the trained filter is associated with the region of interest and the output responses are adaptively combined together to locate the target based on the peak.The AdaBoost classifier is used to train image blocks containing target pixels and background pixels to segment objects in successive frames.Finally,the Mean-Shift mean shift algorithm is used to find the peak value to obtain the optimal position.The experiments were conducted on 13 challenging infrared videos in the LTIR dataset.The results show that the proposed tracker is superior to other trackers in terms of average center position error,distance accuracy,and overlay accuracy.
作者 易欣 郭武士 赵丽 YI Xin;GUO Wushi;ZHAO Li(Sichuan Equipment Manufacturing Industry Robot Application Technology Engineering Laboratory,Deyang 618000,China;School of Software,Shanxi University,Taiyuan 030013,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2019年第8期124-131,共8页 Journal of Chongqing University of Technology:Natural Science
基金 山西省科技厅基础研究计划项目——青年科技研究基金资助项目(2014021039-6) 四川省科技厅科技计划重点研发项目(2018GZ0299)
关键词 目标跟踪 热红外图像 判别式 ADABOOST分类器 MEAN-SHIFT算法 target tracking thermal infrared image discriminant adaboost classifier Mean-Shift algorithm
  • 相关文献

参考文献6

二级参考文献59

  • 1胡韦伟,汪荣贵,方帅,胡琼.基于双边滤波的Retinex图像增强算法[J].工程图学学报,2010,31(2):104-109. 被引量:55
  • 2刘海宾,何希勤,刘向东.基于分水岭和区域合并的图像分割算法[J].计算机应用研究,2007,24(9):307-308. 被引量:14
  • 3Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature dist ributions[J]. Pattern Recognition, 1996,29 (1) :51-59.
  • 4Ahonen T, Hadid A, Pietik A M. Face recognition with local binary patterns[C] // Proceedings of ECCV 2004 Conference on I.ecture Notes in Computer Science 3021. [S.I.]:Springer,2004: 469-481.
  • 5Comaniciu D, Ramesh V, Meet P. Real-time tracking of non-rigid objects using Mean Shift[C//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC : 1EEE, 2000 : 142- 149.
  • 6Comaniciu D,Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (5) : 564-577.
  • 7Lin Jianhua. Divergence measures based on the Shan- non entropy [j]. IEEE Transactions on Information Theory,1991,37(1) :145-151.
  • 8WU Yi, LIM Jongwoo, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1354-1362.
  • 9AVIDAN S. Ensemble tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 494-501.
  • 10BABENKO B, BELONGIE S, and YANG M H. Visual tracking with online multiple instance learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1003-1010.

共引文献40

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部