期刊文献+

基层部队理疗器材淘汰报废数据挖掘分析

Data mining analysis of physiotherapy equipment elimination and abandonment in grass-root forces
下载PDF
导出
摘要 目的:统计分析超短波治疗仪、电脑中频治疗仪、电脑治疗仪和微波治疗仪4类理疗器材的淘汰报废数据,发现基层部队理疗器材管理中存在的问题,为部队理疗器材的管理提供依据和数据支持。方法:以某区域2018年度的1355条理疗器材淘汰报废数据为样本,利用Excel2010和SPSS19.0软件进行统计分析,并计算理疗器材预期报废年限;对生产厂家、报废原因等因素进行分析,并提出相关建议。结果:基层部队理疗器材老旧严重,管理培训有待加强,信息化水平有待进一步提高。结论:对理疗器材的淘汰报废数据进行分析,有利于指导理疗器材的退役、报废、采购、管理培训等工作。 Objective To statistically analyze of the discarded data of four types of physiotherapy equipment including ultrashort wave therapy apparatus, computerized intermediate-frequency therapy apparatus, computerizedtherapy apparatus and microwave therapy apparatus, and to find out the problems in the management of physiotherapy equipment in grass-root units and provide basis and data support for the management of physiotherapy equipment in the army. Methods Totally 1 355 discarded data of physical therapy equipment in 2018 were taken as samples. The expected abandonment life of physiotherapy equipment was calculated by using the analysis tools of Excel 2010 and SPSS 19.0 software. The factors were analyzed such as the manufacturer and the causes of abandonment, and then some countermeasures were put forward accordingly. Results The physiotherapy equipment of grass-root units had problems in aging, management training and informatization. Conclusion By analyzing the discarded data of the main physiotherapy equipment, decision-making basis is provided for the determination of the discarded years, the key points of maintenance training and the weak links of management.
作者 陶学强 段德光 伍瑞昌 李昊 TAO Xue-qiang;DUAN De-guang;WU Rui-chang;LI Hao(Institute of Medical Support Technology,Institute of Systems Engineering,Academy of Military Science,Tianjin 300161,China)
出处 《医疗卫生装备》 CAS 2019年第9期59-62,共4页 Chinese Medical Equipment Journal
关键词 理疗器材 器材淘汰报废 报废年限 基层部队 数据挖掘 physiotherapy equipment apparatus scrap scrap life grass-root force data mining
  • 相关文献

参考文献6

二级参考文献50

  • 1总后卫生部.我军卫生资源信息开发利用现状、问题及对策[M].北京:后勤信息化工作研究论文汇编,2006:241-242.
  • 2DENG Zhonghua, FAN Bing, LU Yingjun, et al. Discussion a- bout big data mining based on hadoop [ J ]. Applied Mechan- ics and Materials, 2013, 380-384: 2063-2066.
  • 3PHRIDVIRAJ M S B, GURURAO C V. Data mining-past, present and future-a typical survey on data streams [ J ]. Pro- cedia Technology, 2014 (12) : 255-263.
  • 4HAN Rui, NIE Lei, GHANEM M M, GUO Yike. Elastic algo- rithms for guaranteeing quality monotonicity in big data mining [ C] //Proceedings -2013 IEEE International Conference on Big Data. IEEE Computer Society, 2013 : 45-50.
  • 5JI Xiaokang, MA Xiuli, HUANG Ting, TANG Shiwei. Contin- uously extracting high-quality representative set from massive data streams [ J]. Lecture Notes in Computer Science, 2013, 8346 ( 1 ) : 84-96.
  • 6TODD D P, YUNG R C, YOSHIMURA A. Using performance measurements to improve MapReduee algorithms [ J ]. Proce- dia Computer Science, 2012 (9) : 1920-1929.
  • 7CHEN Chun-Chieh, LEE Kuan-Wei, CHANG, Chih-Chieh, YANG De-Nian, CHEN Ming-Syan. Efficient large graph pat- tern mining for big data in the cloud [ C ] //Proceedings - 2013 IEEE International Conference on Big Data. IEEE Com-purer Society, 2013 : 531-536.
  • 8LEE D, JIN-SOO K, MAENG S. Large-scale incremental pro- eessing with MapReduee [ J ]. Future Generation Computer Systems, 2014, 36: 66-79.
  • 9HAN J W,MICHELINE K.数据挖掘概念与技术[M].范明,孟晓峰,译.北京:机械工业出版社,2012.
  • 10LAZER D, KENNDY R, KING G, VESPIGNANI A. The para- ble of google flu : traps in big data analysis [ J ]. Science, 2014, 343 (6176): 1203-1205.

共引文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部