期刊文献+

一种针对不平衡数据分类的集成学习算法 被引量:14

An ensemble learning algorithm for unbalanced data classification
原文传递
导出
摘要 针对水声目标识别中常被忽略的数据不平衡问题,提出一种随机子空间AdaBoost算法(RSBoost)。通过随机子空间法在不同水声特征空间上提取子训练样本集,在各个子训练样本集上训练基分类器,将其中少类间隔均值最大的基分类器作为本轮选定的分类器,迭代形成最终集成分类器。在实测数据上进行试验,利用F-measure和G-mean两个准则对RSBoost算法和AdaBoost算法在不同特征集上的性能进行评价。试验结果表明:相对于AdaBoost算法,RSBoost算法在F-measure准则下的平均值由0.07提升到0.22,在G-mean准则下的平均值由0.18提升到0.25,说明在处理水声数据不平衡分类问题上,RSBoost算法优于AdaBoost算法。 For unbalanced data classification problem in underwater acoustic target recognition, a random subspace AdaBoost algorithm called RSBoost was proposed. Subtraining sample set was extracted by random subspace method in different underwater acoustic feature space and base classifier was trained in every subtraining sample set. The base classifier with the maximum margin mean of minority class was chosen as the base classifier of this round, the final ensemble classifier was formed iteratively. The experiment was carried out on the measured data, the performance of RSBoost and AdaBoost in different feature space was evaluated by F-measure and G-mean. The results showed that, compared with AdaBoost, the F-measure of RSBoost improved from 0.07 to 0.22 and the G-mean improved from 0.18 to 0.25, which showed that RSBoost was superior to AdaBoost in underwater acoustic unbalanced classification problem.
作者 张宗堂 王森 孙世林 ZHANG Zongtang;WANG Sen;SUN Shilin(Navigation and Observation Department,Navy Submarine Academy,Qingdao 266000,Shandong,China;91154 force,Sanya 572000,Hainan,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2019年第4期8-13,共6页 Journal of Shandong University(Engineering Science)
关键词 不平衡数据 集成学习 水声目标识别 ADABOOST算法 随机子空间 unbalanced data ensemble learning underwater acoustic target recognition AdaBoost algorithm random space
  • 相关文献

参考文献2

二级参考文献39

  • 1凌晓峰,SHENG Victor S..代价敏感分类器的比较研究(英文)[J].计算机学报,2007,30(8):1203-1212. 被引量:35
  • 2Bartlett P L, Traskin M. AdaBoost is consistent. Journal of Machine Learning Research, 2007, 8:2347-2368.
  • 3Schapire R E. The convergence rate of AdaBoost [open prob lem]//Proceedings of the 23rd Conference on Learning Theo ry. Haifa, Israel, 2010.
  • 4Japkowicz N. Learning from imbalanced data sets: A com parison of various strategies/ /Proceedings of the AAAI 2000 Workshop, 2000:10-15.
  • 5Chawla N V, Japkowicz N, Kotcz A. Workshop on learning from imbalanced data sets//Proceedings of the ICML' 2003. Washington, DC, USA, 2003.
  • 6Chawla N V, Japkowicz N, Kolez A. Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Ex- plorations Newsletter, 2004, 6 (1) : 1-6.
  • 7He Hai-Bo, Garcia E A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
  • 8Liu X Y, Zhou Z H. The influence of class imbalance on cost-sensitive learning: An empirical study//Proeeedings of the 6th International Conference on Data Mining(ICDM'06). Hong Kong, China, 2006 : 970-974.
  • 9Wang B X, Japkowicz N. Boosting support vector machines for imbalanced data sets. Lecture Notes in Artificial Intelli- gence, 2008, 4994: 38-47.
  • 10Ertekin S, Huang J, Bottou L, Giles L. Learning on the border: active learning in imbalanced data classification// Proceedings of the ACM Conference on Information and Knowledge Management. Lisbon, Portugal, 2007: 127-136.

共引文献63

同被引文献133

引证文献14

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部