期刊文献+

铁路智能客服关键技术研究 被引量:2

Key technologies of railway intelligent customer service
下载PDF
导出
摘要 提出铁路智能客服总体框架,研究铁路客运服务专业的语义理解与处理,深度学习模型和用户画像等关键技术,解决铁路12306互联网售票系统(简称:12306系统)客服维护成本高、服务时间受限、培训成本高、线路忙、人为错误不利于控制等问题。研究表明,铁路智能客服可有效提高铁路12306系统客服接通率和客户满意度,提升铁路用户体验,树立铁路良好社会形象。 This paper proposed the overall framework of railway intelligent customer service,researched on key technologies of railway passenger service professional semantic understanding and processing,deep learning model and user portrait,solved the problems of high maintenance cost,limited service time,high training cost,busy line,human errors which were not conducive to control of railway 12306 Internet ticketing and reservation system.Research results show that the railway intelligent customer service can effectively improve the connection rate and customer satisfaction of the railway 12306 system,enhance railway user experience,establish a good social image of railway.
作者 张志强 汪健雄 靳超 ZHANG Zhiqiang;WANG Jianxiong;JIN Chao(Institute of Computing Technologies,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China)
出处 《铁路计算机应用》 2019年第9期1-5,共5页 Railway Computer Application
基金 中国铁路总公司科技研究开发计划重点课题(Z2017-X004)
关键词 12306互联网售票系统 智能客服 接通率 满意度 12306 Internet ticketing and reservation system intelligent customer service connection rate satisfaction
  • 相关文献

参考文献3

二级参考文献82

  • 1Kim G, Lu Y, Hu Y, Loizou P C. An algorithm that im- proves speech intelligibility in noise for normal-hearing lis- teners. The Journal of the Acoustical Society of America, 2009, 126(3): 1486-1494.
  • 2Dillon H. Hearing Aids. New York: Thieme, 2001.
  • 3Allen J B. Articulation and intelligibility. Synthesis Lectures on Speech and Audio Processing, 2005, 1(1): 1-124.
  • 4Seltzer M L, Raj B, Stern R M. A Bayesian classifier for spectrographic mask estimation for missing feature speech recognition. Speech Communication, 2004, 43(4): 379-393.
  • 5Weninger F, Erdogan H, Watanabe S, Vincent E, Le Roux J, Hershey J R, Schuller B. Speech enhancement with LSTM recurrent neural networks and its application to noise-robust ASR. In: Proceedings of the 12th International Conference on Latent Variable Analysis and Signal Separation. Liberec, Czech Republic: Springer International Publishing, 2015.91 -99.
  • 6Weng C, Yu D, Seltzer M L, Droppo J. Deep neural networks for single-channel multi-talker speech recognition. IEEE/ ACM Transactions on Audio, Speech, and Language Pro- cessing, 2015, 23(10): 1670-1679.
  • 7Boll S F. Suppression of acoustic noise in speech using spec- tral subtraction. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27(2): 113-120.
  • 8Chen J D, Benesty J, Huang Y T, Doclo S. New insights into the noise reduction wiener filter. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(4): 1218 -1234.
  • 9Loizou P C. Speech Enhancement: Theory and Practice. New York: CRC Press, 2007.
  • 10Liang S, Liu W J, Jiang W. A new Bayesian method incor- porating with local correlation for IBM estimation. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(3): 476-487.

共引文献86

同被引文献16

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部