摘要
将动车组运用维护过程中产生的海量数据进行处理与分析,解决数据不能转换为可用结果的问题。依托大数据分析软件Tableau、按照大数据分析的流程进行处理及分析,实现了闸片磨耗率、磨耗差异、偏磨量等多角度展示,同时,结合地图与GPS坐标对故障分布进行了标记。分析结果表明,大数据处理技术可提高数据分析的效率及准确性。
This article processed and analyzed the massive data generated during the EMU operation and maintenance,and solved the problem that data can not be converted into available results.Relying on the big data analysis software Tableau and according to the process of big data analysis,the brake wear rate,wear difference,partial wear and other aspects were displayed.At the same time,the fault distribution was marked with the map and GPS coordinates.The analysis results show that the big data processing technology can improve the efficiency and accuracy of data analysis.
作者
严皓
YAN Hao(Chengdu EMU Depot,China Railway Chengdu Group Co. Ltd.,Chengdu 610051,China)
出处
《铁路计算机应用》
2019年第9期49-53,共5页
Railway Computer Application
基金
中国铁路成都局集团有限公司科技研究开发计划项目(2016CX1639)
关键词
数据清洗
线性回归
磨耗率
data cleaning
linear regression
wear rate