期刊文献+

基于单源点检测的欠定混合矩阵的聚类分析 被引量:6

Clustering analysis of underdetermined mixing matrix based on single-source-point detection
下载PDF
导出
摘要 为提高欠定盲源分离的混合矩阵估计精度,提出一种单源点(SSP)检测与具有噪声的基于密度空间聚类(DBSCAN)相结合的新方法。首先,把时域的观测信号变换成时频域的稀疏信号,采用SSP检测以增强稀疏信号的线性聚类特性,并通过镜像映射把线聚类转变成数据的致密聚类;然后,利用DBSCAN搜索高密度的点并不断连接近邻数据以形成聚类簇,从而自动寻找聚类的数量和相应的聚类中心。由于每个聚类中心对应于欠定混合矩阵的一个列向量,因此采用所提出的聚类分析方法可实现对混合矩阵的估计。对音频信号的仿真结果证明,该方法能有效地提高混合矩阵的估计精度。 To improve the accuracy of mixing matrix estimation for underdetermined blind source separation ( UBSS), a new method combining single-source-point ( SSP) detection and density based spatial clustering of applications with noise ( DBSCAN) is proposed. Firstly, the observed signals in the time domain are transformed into sparse signals in the time-frequency domain, SSP detection is used to enhance the linear clustering characteristics of the sparse signals, and the linear clustering is translated into compact clustering by mirroring mapping. And then, the DBSCAN is used to search for high-density points and continuously connect the neighbor data to form clusters, it can also automatically find the number of clusters and the corresponding cluster centers. Since each cluster center corresponds to one column vector of the underdetermined mixing matrix, the proposed clustering analysis method can be used to estimate the mixing matrix. The simulation results of the audio signals show that the proposed method can effectively improve the estimation accuracy of the underdetermined mixing matrix.
作者 何选森 何帆 He Xuansen;He Fan(Guangzhou Huaxia Vocational College, Guangzhou 510935, China;College of information science and engineering, Hunan University, Changsha 410082, China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2019年第6期157-164,共8页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(60572183)资助项目
关键词 欠定盲源分离 混合矩阵估计 单源点检测 镜像映射 具有噪声的基于密度的空间聚类 underdetermined blind source separation mixing matrix estimation single-source-point detection mirroring mapping density based spatial clustering of applications with noise
  • 相关文献

参考文献3

二级参考文献32

  • 1李舜酩.转子振动故障信号的盲分离[J].航空动力学报,2005,20(5):751-756. 被引量:30
  • 2张文爱,刘俊豪.基于粒子群算法的盲源分离算法[J].太原理工大学学报,2006,37(2):169-172. 被引量:7
  • 3HE Zhaoshui XIE Shengli FU Yu.Sparse representation and blind source separation of ill-posed mixtures[J].Science in China(Series F),2006,49(5):639-652. 被引量:24
  • 4J.F. Cardoso, “Blind signal separation: statistical principles”,Proceedings of IEEE, Vol.41, No.10, pp.2009-2025, 1998.
  • 5S. Choi, A. Cichocki, H.M. Park et at., “Blind source separationand independent component analysis: A review”,Neural Infor-mation Processing-Letters and Reviews, Vol.6, No.l, pp.1-57,2005.
  • 6P. Comon, C. Jutten, “Handbook of blind source separation”,Academic Press is an imprint of Elsevier, 2010.
  • 7P. Bofill, M. Zibulevsky, Underdetermined blind source sepa-ration using sparse representations”, Signal Processing,Vol.81,pp.2353-2362, 2001.
  • 8Y.Q. Li, A. Cichocki, S. Amari, “Analysis of sparse representa-tion and blind source separation”, Neural Computation, Vol.16,No.6, pp.1193-1234, 2004.
  • 9T.Y. Sun, L.E. Lan, C.C. Liu et al., “Mixing matrix identifica-tion for underdetermined blind signal separation: Using houghtransform and fuzzy k-means clustering”, Proc. of the 2009IEEE International Conference on Systems, Man, and Cyber-netics, San Antonio, USA, pp.1621-1626, 2009.
  • 10Y.Q. Li, S. Amari, A. Cichocki et al, "Underdetermined blindsource separation based on sparse representation”, IEEE Trans,on Signal Processing^ Vol.54,No.2, pp.423—437,2006.

共引文献21

同被引文献51

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部