期刊文献+

基于符号检测辅助的MMSE与LS干扰对齐算法研究 被引量:1

MMSE and LS Interference Alignment Algorithm Based on Symbol Detection
下载PDF
导出
摘要 干扰对齐(IA)是一种有效消除干扰的管理机制。为了彻底消除干扰信号对期望信号的影响,通过预编码技术处理使干扰在接收端重叠,使接收端的干扰信号与期望信号有效分开。在传统最小均方误差(Minimum Mean Square Error,MMSE)算法和最小二乘(least square,LS)算法基础上,提出基于符号检测辅助的最小均方误差(Symbol Detection Aided Minimum Mean Square Error,SDA-MMSE)算法和最小二乘(Symbol Detection Aided Least Square,SDA-LS)算法。分别基于传统算法和改进算法进行迭代计算,通过仿真可看出SDA-MMSE算法的MSE较SDA-LS算法的MSE降低约20%。理论分析与仿真结果表明,改进算法较传统算法具有更好的系统性能,且SDA-MMSE算法系统性能最优。 Interference alignment (IA) is an effective management mechanism for eliminating interference. In order to eliminate the influence of interference signal on the desired signal thoroughly, we use precoding technology to process the interference at the receiver so that the interference signal at the receiver can be effectively separated from the desired signal. In this paper, a symbol detection aided minimum mean square error (SDA - MMSE) algorithm and a symbol detection aided least squares (SDA - LS) algorithm based on symbol detection are proposed on the traditional MMSE algorithm and LS algorithm. Firstly, the iterative calculation is carried out based on the traditional algorithm, and then the iterative calculation is carried out by using the improved algorithm. The simulation results show that the MSE of SDA-MMSE algorithm is about 20% lower than that of SDA-LS algorithm. The theoretical analysis and results show that the proposed algorithm has better system performance than the traditional algorithm, and the performance of SDA-MMSE algorithm is the best.
作者 贾国庆 张寒 JIA Guo-qing;ZHANG Han(School of Physics & Electronic Information Engineering,Qinghai Nationalities University,Xi’ning 810007,China)
出处 《软件导刊》 2019年第9期72-76,共5页 Software Guide
基金 中国科学院无线传感网与通信重点实验室开放基金项目(2016002) 青海省自然科学基金项目(2016-ZJ-922Q) 青海民族大学校级重点项目(2019XJZ09)
关键词 干扰对齐 符号检测 最小均方误差 最小二乘算法 interference alignment symbol detection minimum mean square error least square algorithm
  • 相关文献

参考文献3

二级参考文献16

  • 1Cadambe V R and Jafar S A. Interference alignment and degrees of freedom of the K-user interference channel[J]. IEEE Transactions on Information Theory, 2008, 54(8): 3425-3441.
  • 2Zheng L and Tse D N C. Diversity and multiplexing: afundamental tradeoff in multiple-antenna channels[J]. IEEE Transactions on Information Theory, 2003, 49(5): 1073-1096.
  • 3Sung H, Park S H, Lee K J, et al.. Linear precoder designs for K-user interference channels[J]. IEEE Transactions on Wireless Communications, 2010, 9(1): 291-301.
  • 4Behrang Nosrat-Makouei, Andrews J G, and Heath R W Jr. User admission in MIMO interference alignment networks [C] 2011 IEEE International Conference on Speech and Signal Processing, Czech Republic, 2011: 3360-3363.
  • 5Nosrat-Makouei B, Andrews J G, and Heath R W. MIMO interference alignment over correlated channels with imperfect CSI[J]. IEEE Transactions on Signal Processing, 2010, 59(6): 2783-2794.
  • 6Gomadam K, Cadambe V R, and Jafar S A. Approaching the capacity of wireless networks through distributed interference alignment [C]. 2008 IEEE Global Telecommunications Conference, New Orleans, LO, 2008: 1-6.
  • 7Peters S W and Heath R W Jr. Cooperative algorithms for MIMO interference channels[J]. IEEE Transactions on Vehicular Technology, 2011, 60(1): 206-218.
  • 8Santamaria I, Gonzalez O, Heath R W, et al.. Maximum sum-rate interference alignment algorithms for MIMO channels [C]. 2010 IEEE Global Telecommunications Conference, Miami, FL, 2010: 1-6.
  • 9Ning H, Ling C, and Leung K K. Feasibility condition for interference alignment with diversity[J]. IEEE Transactions on Information Theory, 2011, 57(5): 2902-2912.
  • 10Shen H, Li B, Tao M, et al.. MSE-based transceiver designs for the MIMO interference channel[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3480-3489.

共引文献4

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部