期刊文献+

有限域上置换多项式的研究进展

Research Progress on Permutation Polynomials in Finite Fields
下载PDF
导出
摘要 AGW准则和分段方法是构造有限域上置换多项式的两种主要方法。介绍有限域上置换多项式在密码学和编码理论中的应用,总结利用AGW准则和分段方法构造有限域上置换多项式和逆置换的研究进展,阐述置换多项式存在的问题,并对下一步研究工作进行展望。 The Akbary-Ghioca-Wang(AGW) criterion and piecewise method are two main methods for constructing permutation polynomials of finite fields.This paper introduces the application of permutation polynomials in cryptography and coding theory,reviews the research progress of the permutation polynomials and their inverses constructed by AGW criterion and piecewise method,describes the problem of permutation polynomials,and finally the next step is to look into the research work.
作者 郑彦斌 易宗向 ZHENG Yanbin;YI Zongxiang(Guangxi Key Laboratory of Cryptography and Information Security,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China;Department of Public Foundation,Guangdong University of Science and Technology,Dongguan,Guangdong 523083,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第9期124-127,共4页 Computer Engineering
基金 国家自然科学基金(61602125,61502113) 广西自然科学基金(2016GXNSFBA380153,2017GXNSFAA198192) 广西密码学与信息安全重点实验室项目(GCIS201625)
关键词 密码学 有限域 逆置换 多项式 AGW准则 分段方法 cryptography finite fields inverses of permutation polynomials Akbary-Ghioca-Wang(AGW) criterion piecewise method
  • 相关文献

参考文献2

二级参考文献10

  • 1Lidl R., Niederreiter H., Finite Fields and Their Applications (Revised Edition), Cambridge: Cambridge University Press, 1994.
  • 2Henk D. L., Hollmann, Qing X., A class of permutation polynomials of F2m related to Dickson polynomials, Finite Fields and Their Applications, 2005, 11: 111-122.
  • 3MacWilliams F. J., Sloane N. J. A., The Theory of Error-Correcting Codes, The Neitherland: Elsevier Science Publishers, B. V., Fifth Edition, 1986.
  • 4Feng K. Q., The Algebraic Theory of Error-Correcting Codes, Beijing: Tsinghua University Press, 2006.
  • 5Yuan J., Ding C. S., Four classes of permutation polynomials of F2m, Finite fields and their applications, Press.
  • 6Lidl R., Mullen G. L., Turnwald G., Dickson Polynomials, Pitman Monographs in Pure and Applied Mathematics, New-York: John Wiley & Sons. Inc., 1993, 1-78.
  • 7Schneier B., Applied Cryptography, Protocols, Algorithms, and Source Code in C, Second Edition, Tanslated by Wu Shizhong, Zhu shixiong and Zhang Wenzheng, Beijing: Machinery Industry Press, 1999.
  • 8Han W. B., Polynomials and primitive roots over finite fields, Acta Mathematica Siniea, Chinese Series, 1989, 32(1): 110-117.
  • 9Yang J. M., An explicity formula for the number of solutions of a kind of equations over finite fields, Acta Mathematiea Sinica, Chinese Series, 2007, 50(3): 653-660.
  • 10LIU MeiCheng, PEI DingYi & DU YuSong College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China.Identification and construction of Boolean functions with maximum algebraic immunity[J].Science China(Information Sciences),2010,53(7):1379-1396. 被引量:6

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部