摘要
令R是有单位元1的2-挠自由交换环, Ln(R)是由R上所有n阶反对称矩阵构成的李代数.本文研究了Ln(R)(n≥3)上局部导子和2-局部导子的性质.利用Ln(R)作为李代数的完备性和矩阵计算技巧,证明了Ln(R)上的每个局部导子和2-局部导子都是导子.推广了Ln(R)上关于导子的主要结果.
Let R be a 2-torsion free commutative ring with identity 1 and Ln(R) a Lie algebra consisting of all n ×n antisymmetric matrices over R. The aim of this paper is to study the character of the local derivations and 2-local derivations of Ln(R). By using that Ln(R) is a complete Lie algebra and the skill of matrix computation, it is proved that every local derivation and every 2-local derivation of Ln(R) are derivations, which extends the main result of derivations of Ln(R).
作者
王迪
王颖
WANG Di;WANG Yin(School of Mathematical Sciences, Dalian University of Technology, Dalian 116024)
出处
《数学杂志》
2019年第5期757-766,共10页
Journal of Mathematics
基金
国家自然科学基金资助(11471090)
关键词
导子
局部导子
2-局部导子
反对称矩阵李代数
交换环
derivation
local derivation
2-local derivation
Lie algebra of antisymmetric matrices
commutative ring