期刊文献+

明渠层流的总流微分模型与最小能耗原理 被引量:4

Differential model of total flow and principle of minimum energy dissipation for laminar flow in open channel
原文传递
导出
摘要 明渠流是自然界与工程技术中广泛存在的一类流动.通过理论分析和推导,得到如下成果:1)以粘性流体力学理论为基础得到了明渠层流总流微分模型的控制方程,与以往的控制方程不同,该控制方程是由明渠中均质不可压缩粘性液体层流运动的流场控制方程与边界条件通过直接积分得到,其能实现明渠层流流场描述与总流描述的对接,且运动方程中的能坡有显示表达式;2)提出并证明了明渠恒定均匀层流的最小能耗原理. Open channel flow is a type of flow that exists widely in nature and is used in engineering technologies. Through a theoretical analysis, this paper obtains the following results: 1) Based on the theory of viscous fluid dynamics, the governing equations of the laminar total flow differential model in an open channel are obtained and differ from the previous governing equations. The governing equation in this paper is derived from the control equation of homogeneous incompressible viscous fluid laminar flow in an open channel and the boundary conditions through direct integration, and it can realize the connection between the description of laminar flow field and the total flow in an open channel. Further, the total flow energy loss has a display expression. 2) The principle of minimum energy dissipation for a constant uniform laminar flow in open channels is proposed and proved.
作者 刘士和 廖伟坚 LIU Shihe;LIAO Weijian(School of Water Resources and Hydropower,Wuhan University, Wuhan 430072, China)
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2019年第9期753-757,801,共6页 Engineering Journal of Wuhan University
基金 国家重点研发计划(编号:2018YFC0407603)
关键词 明渠流 层流 总流微分模型 最小能耗原理 open-channel flow laminar flow total flow differential model minimum energy dissipation principle
  • 相关文献

参考文献5

二级参考文献23

  • 1曹叔尤 KNIGHTDW.临界渠道水力几何形态新概念[A].中国水利学会泥沙专业委员会编.第二届全国泥沙基本理论研究学术讨论会论文集[C].北京:中国建材工业出版社,1998.195-200.
  • 2CAO S, KNIGHT D W. Entropy based approach of threshold alluvial channels[J]. Journal of Hydraulic Research, 1997, 35(4): 1-21.
  • 3CAO S, KNIGHT D W. Design for hydraulic geometry of alluvial channels[J]. Journal of Hydraulic Engineering, 1998, 124(5).. 484 492.
  • 4CHANG H H. Fluvial processes in river engineering[M]. New York: John Wiley and Sons, 1988, 1-432.
  • 5YANG C T, SONG C C S, WOLDENBERG M J. Hydraulic geometry and minimum rate of energy dissipation[J]. Water Resources Research, 1981. 17(4): 1014-1018.
  • 6吴持恭.水力学(上册)[M].北京:高等教育出版社,1982.249-251.
  • 7STEBBING J. The shape of self-formed model in alluvial channels[J]. Proceedings of the Institution of Civil Engineers, 1963, 25: 485-510.
  • 8GLOVER R E, FLOREY Q L. Stable channels profiles[R]. U.S. Bureau of Reclamation, Hydraulics No.325, 1951.
  • 9PARKER G. Self formed straight river with equilibrium banks and mobile bed: Part Ⅱ, The gravel river[J].Journal of Fluid Mechanics, 1978, 89: 127-146.
  • 10PARKER G. Hydraulic geometry of active gravel rivers[J]. Journal of the Hydraulics Division, 1979, 105(9):1185-1201.

共引文献11

同被引文献26

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部