摘要
针对基本的布谷鸟算法在求解流水车间调度问题时存在搜索能力差、收敛速度慢的缺点,提出了一种高斯扰动的布谷鸟搜索算法(GCS)。该算法不仅增加了鸟窝移动的活力,还改善了搜索能力差的情况。仿真实验结果表明,改进的布谷鸟算法在求解流水车间调度问题上具有良好的优化性能,要优于基本的布谷鸟算法。
Aiming at the shortcomings of the basic cuckoo algorithm in solving flow shop scheduling problems,such as poor search ability and slow convergence speed,a new cuckoo search algorithm based on Gauss perturbation (GCS) is proposed. This algorithm not only increases the vitality of bird’s nest movement,but also improves the poor search ability. The simulation results show that the improved cuckoo algorithm has good optimization performance in solving flow shop scheduling problems,and is superior to the basic cuckoo algorithm.
作者
高杨
云晓燕
GAO Yang;YUN Xiaoyan(School of Software,Liaoning University of Science and Technology,Anshan 114051,China)
出处
《现代信息科技》
2019年第13期18-19,22,共3页
Modern Information Technology
基金
基于混合智能算法解决流水车间问题(项目编号:20181046303)
关键词
流水车间调度问题
高斯扰动
搜索速度
flow shop scheduling problem
Gauss perturbation
search speed