期刊文献+

基于回补途径的TCA循环改造对克雷伯氏菌生长和甘油代谢的影响 被引量:2

TCA cycle modification based on the anaplerotic reaction and its effects on growth and glycerol metabolism in Klebsiella pneumonia
原文传递
导出
摘要 回补途径和TCA循环在克雷伯氏菌(Klebsiella pneumoniae)的中心代谢中扮演着十分重要的角色.通过过表达回补途径的关键酶磷酸烯醇式丙酮酸羧化酶(PPC)和柠檬酸(TCA)循环的关键酶柠檬酸合成酶(GLTA)将磷酸烯醇式丙酮酸(PEP)和乙酰辅酶A节点的碳流引入TCA循环,以考察基于回补途径的TCA循环强化对K. pneumoniae生长和甘油代谢的影响.结果显示:单独过表达ppc或gltA基因,TCA循环还原和氧化分支的中间代谢产物琥珀酸和α-酮戊二酸分别增加了8.3倍和1.2倍,甘油利用能力明显增强,除2,3-丁二醇外,其他副产物积累量均有所下降,但1,3-PDO产量分别降低了23.3%、5.9%.共表达ppc和gltA基因后,与对照菌相比,生物量降低了35.7%,甘油利用能力进一步增强,1,3-丙二醇产量提高了10.2%,所有副产物积累量均有所减少;与单独过表达ppc或gltA基因相比,乙醇、乳酸、乙酸积累量未有明显变化,但生物量略有提高,2,3-丁二醇积累量显著降低.上述结果表明通过共表达磷酸烯醇式丙酮酸羧化酶和柠檬酸合成酶强化TCA循环能够提高菌株的甘油利用能力,弱化副产物合成,强化1,3-丙二醇的合成. The anaplerotic reaction and the tricarboxylic acid (TCA) cycle play important roles in the central metabolism of Klebsiella pneumoniae. Phosphoenolpyruvate carboxylase (PPC) and citrate synthase (GLTA) are key enzymes of the anaplerotic reaction and TCA cycle, respectively. This study aimed to investigate the effects of strengthening the TCA cycle on cell growth and glycerol metabolism of recombinant K. pneumoniae based on the anaplerotic reaction. To fulfill these objectives, PPC encoded by ppc and GLTA encoded by gltA were expressed individually or co-expressed in K. pneumoniae. Overexpressing ppc and gltA genes led to a 8.3-fold and 1.2-fold increase in the production of succinate and α-ketoglutarate, respectively. Succinate and α-ketoglutarate are the intermediate metabolites of the reductive and oxidative branches of the TCA cycle. The glycerol utilization ability of the recombinants was significantly enhanced. The accumulation of by-products-except 2,3-butanediol-decreased, but the yield of 1,3-propanediol (1,3-PDO) was decreased by 23.3% and 5.9%, respectively. Compared to the control strain, co-expression of ppc and gltA resulted in a 35.7% decrease in biomass, but the glycerol utilization ability was further enhanced and 1,3-PDO titer was increased by 10.2%. In addition, the accumulation of all by-products decreased. Production of ethanol, lactate, and acetate did not significantly differ between the strains that overexpressed ppc or gltA;however, the biomass increased slightly and the accumulation of 2,3-butanediol decreased significantly. Enhancing the TCA cycle by co-overexpressing ppc and gltA could improve the glycerol utilization ability of recombinant K. pneumoniae, weaken the synthesis of by-products, and enhance the production of 1,3-PDO.
作者 梁川 王洁茹 诸葛斌 陆信曜 宗红 LIANG Chuan;WANG Jieru;ZHUGE Bin;LU Xinyao;ZONG Hong(Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Laboratory of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi 214122, China)
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2019年第4期972-976,共5页 Chinese Journal of Applied and Environmental Biology
基金 国家轻工技术与工程一流学科自主课题(LITE2018-01)资助~~
关键词 回补途径 磷酸烯醇式丙酮酸羧化酶 柠檬酸合成酶 TCA循环 1 3-丙二醇 anaplerotic reaction phosphoenolpyruvate carboxylase citrate synthase TCA cycle 1 3-propanediol
  • 相关文献

参考文献3

二级参考文献30

  • 1黄志华,张延平,刘铭,王宝光,曹竹安.甲酸脱氢酶在Klebsiella pneumoniae中的表达和功能分析[J].微生物学报,2007,47(1):64-68. 被引量:14
  • 2Biebl H, Menzel K, Zeng AP, Deckwer WD. Microbial production of 1,3-propanediol [J]. Appl Microbiol Biot, 1999, 52 (3): 289-297.
  • 3Zeng AP, Biebl H. Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends [M]//Schügerl K, Zeng AP, Aunins JG. Tools and Applications of Biochemical Engineering Science. Berlin: Springer, 2002: 239-259.
  • 4Oh BR, Seo JW, Heo SY, Luo LH, Hong WK, Park DH, Kim CH. Efficient production of 1,3-propanediol from glycerol upon constitutive expression of the 1,3-propanediol oxidoreductase gene in engineered Klebsiella pneumoniae with elimination of by-product formation[J]. Bioproc Biosyst Eng, 2013, 36 (6): 757-763.
  • 5Guo X, Fang H, Zhuge B, Zong H, Song J, Zhuge J, Du XX. budC knockout in Klebsiella pneumoniae for bioconversion from glycerol to 1,3-propanediol [J]. Biotechnol Appl Bioc, 2013, 60 (6): 557-563.
  • 6Zheng P, Wereath K, Sun J,Heuvel J, Zeng AP. Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae [J]. Process Biochem, 2006, 41 (10): 2160-2169.
  • 7Xu YZ, Guo NN, Zheng ZM, Ou XJ, Liu HJ, Liu DH. Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae [J]. Biotechnol Bioeng, 2009, 104 (5): 965-972.
  • 8Jin P, Lu S, Huang H, Luo F, Li S. Enhanced reducing equivalent generation for 1,3-propanediol production through cofermentation of glycerol and xylose by Klebsiella pneumoniae [J]. Appl Biochem Biotechnol, 2011, 165 (7-8): 1532-1542.
  • 9Zhang Y, Huang Z, Du C, Li Y, Cao Z. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol [J]. Metab Eng, 2009, 11 (2): 101-106.
  • 10Cui YL, Zhou JJ, Gao LR, Zhu CQ, Jiang X, Fu SL, Gong H. Utilization of excess NADH in 2,3-butanediol-deficient Klebsiella pneumoniae for 1,3-propanediol production [J]. J Appl Microbiol, 2014, 117 (3): 690-698.

共引文献4

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部