期刊文献+

纳米压痕方法测量超薄钛薄膜弹性模量的研究 被引量:1

Study on Elastic Modulus of Ultra-thin Ti Films Measured by Nanoindentation Method
下载PDF
导出
摘要 利用直流磁控溅射(DCMS)在(100)方向的硅片上沉积厚度为60、90、120、180nm的钛薄膜。采用布鲁克原子力显微镜(AFM)以及扫描电镜/扫描探针显微镜(SEM/SPM)联合测试系统分别对其进行纳米压痕试验,并通过赫兹理论和King模型求得其弹性模量值。由布鲁克原子力显微镜(AFM)得到的结果表明,厚度为60~180nm的钛薄膜弹性模量在(95±2)GPa^(132±6)GPa;对于同一厚度的钛薄膜,在不同的峰值力下,其弹性模量均随着压入深度的增加而减小;而且对于不同厚度的钛薄膜,在相同的峰值力下,其弹性模量随薄膜厚度的增加而减小。另外,采用SEM/SPM联合测试系统得到钛薄膜的弹性模量同样随着薄膜厚度的增大而减小。 Ti nanofilm with the thickness of 60,90,120 and 180 nm was deposited on the (100) silicon wafer by using DCMS.The nano indentation experiments of the above nanofilm were carried out but by the AFM of Bruker and SEM/SPM combined system,respectively.Based on the Hertzian contact theory and King model,the elastic modulus was obtained.The results obtained by AFM of Bruker show that the elastic modulus of Ti films with the thicknesses of 60-180 nm is in the rang of (95±2 ) GPa-(132±6 )GPa.For the Ti film with the same thickness,under different peak forces,the elastic modulus decreases with the increase of the pressed depth.For the film with different thickness,under the same peak force,the elastic modulus of Ti films decreases with the increase of the film thickness.Furthermore,the elastic modulus of the film obtained by SEM/SPM combined system also decreases with the increase of the film thickness.
作者 赵波慧 刘燕萍 张跃飞 吕俊霞 ZHAO Bohui;LIU Yanping;ZHANG Yuefei;LYU Junxia(College of Mechanical Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Institute of Microstructure and Properties of Advanced Materials,Beijing University of Technology,Beijing 100124,China;Institute of Laser Engineering,Beijing University of Technology,Beijing 100124,China)
出处 《热加工工艺》 北大核心 2019年第16期92-95,101,共5页 Hot Working Technology
基金 国家自然科学基金资助项目(11374027) 北京市自然科学基金资助项目(2152007)
关键词 纳米压痕 超薄钛薄膜 弹性模量 力学性能 nanoindentation ultra-thin Ti films elastic modulus mechanical property
  • 相关文献

参考文献2

二级参考文献24

  • 1Pham V, Jun S, Kirn H, et al. Deposition of titanium nitride (TIN) on Co-Cr and their potential application as vascular stent [J]. Applied Surface Science,2012,258(7):2864-2868.
  • 2Craciun D, Bourne G, Zhang J, et al. Thin and hard ZrC/TiN multilayers grown by pulsed laser deposition [J]. Surface and Coatings Technology,2011,205(23-24): 5493-5496.
  • 3Chou W, Yu G, Huang J. Mechanical properties of TiN thin film coatings on 304 stainless steel substrates [J]. Surface & Coatings Technology, 2002,149(1) : 7-13.
  • 4Yeh T, Wu J, Hu L. The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J]. Thin Solid Films,2008,516(21) : 7294-7298.
  • 5Huang J, Ouyang F, Yu G. Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel [J]. Surface & Coatings Technology,2007, 201(16-17):7043-7053.
  • 6Ezz T, Crouse P, Li L, et al. Synthesis of TiN thin films by a new combined laser/sol-gel processing technique [J]. Applied Surface Science, 2007,253(19): 7903-7907.
  • 7Gu H D, Leung K M, Chang C Y, et al. Room-temperature growth of high-purity titanium nitride by laser ablation of titanium in a nitrogen atmosphere [J]. Surface & Coatings Technology, 1998,110(3): 153-157.
  • 8Jimenez C, Gilles S, Bernard C, et al. Deposition of TiN thin films by organometallic chemical vapor deposition thermodynamical predictions and experimental results [J]. Surface & Coatings Technology, 1995,76-77(1) : 237-243.
  • 9Kohlscheen J, Stock H R, Mayr P. Chemical bonding inmagnetron sputtered TiNx coatings and its relation to diamond tumability [J]. Surface & Coatings Technology,2001,142-144: 992-998.
  • 10Han J G, Yoon J S, Choi B H, et al. Development and characterization of TiN coatings by ion beam assisted deposition process for improved wear resistance [J]. Surface & Coatings Technology, 1995,76-77(2): 437-442.

共引文献6

同被引文献53

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部