期刊文献+

Trichostatin A and Shear Stress in Regulating Endothelium Differentiation of Bone Marrow Mesenchymal Stem Cells

Trichostatin A and Shear Stress in Regulating Endothelium Differentiation of Bone Marrow Mesenchymal Stem Cells
原文传递
导出
摘要 Differentiation of bone marrow mesenchymal stem cells (MSCs) into endothelial cells (EC) is characterized by the expression of specific endothelial marker genes. Mechanical stimulations play potential effects in EC oriented differentiation of MSCs. However, molecular mechanisms of endothelial differentiation from MSCs have not been defined.Histone acetylations play important roles in regulating gene expression. Histone acetylation status is maintained by histone acetyltransferase (HAT) and histone deacetylases (HDACs). Our previous work described that VEGF and laminar shear stress (SS) work together in determining EC oriented differentiation of MSC. Trichostatin A (TSA) is one of the lustone deacetylase inhibitor. In this study, we found that both TSA and SS could induce EC oriented differentiation of MSCs. And TSA combined with SS showed more powerful influence on the EC oriented differentiation of MSCs. Differentiation of bone marrow mesenchymal stem cells(MSCs) into endothelial cells(EC) is characterized by the expression of specific endothelial marker genes. Mechanical stimulations play potential effects in EC oriented differentiation of MSCs. However, molecular mechanisms of endothelial differentiation from MSCs have not been defined.Histone acetylations play important roles in regulating gene expression.Histone acetylation status is maintained by histone acetyltransferase(HAT) and histone deacetylases(HDACs). Our previous work described that VEGF and laminar shear stress(SS) work together in determining EC oriented differentiation of MSC. Trichostatin A(TSA) is one of the lustone deacetylase inhibitor. In this study, we found that both TSA and SS could induce EC oriented differentiation of MSCs. And TSA combined with SS showed more powerful influence on the EC oriented differentiation of MSCs.
出处 《Chinese Journal of Biomedical Engineering(English Edition)》 2018年第4期139-143,共5页 中国生物医学工程学报(英文版)
基金 National Natural Science Foundation of China grant number:10925208,11120101001,10802006 and 10972024 NFundamental Research Funds for the Central Universities grant number:YWF-10-02-065
关键词 bone MARROW MESENCHYMAL stem CELLS (MSCs) endothelial CELLS (EC) DIFFERENTIATION shear stress TRICHOSTATIN A bone marrow mesenchymal stem cells(MSCs) endothelial cells(EC) differentiation shear stress Trichostatin A
  • 相关文献

参考文献1

二级参考文献166

  • 1Zhang J, Kalkum M, Chait BT, etal. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 2002; 9:611-623.
  • 2Hassig CA, Fleischer TC, Billin, AN, et al. Histone deacetylase activity is required for full transcriptional repression by mSin3A.Cell 1997; 89:341-347.
  • 3Zhang Y, Ng HH, Erdjument-Bromage H, et al. Analysis of the NuRD subnnits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 1999; 13:1924-1935.
  • 4You A, Tong JK, Grozinger CM, et al. CoREST is an integral component of the CoREST-human histone deacetylase complex.Proc Natl Acad Sci USA 2001; 98:1454-1458.
  • 5Alland L, David G, Shen-Li H, et al. Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex. Mol Cell Biol 2002; 22:2743-2750.
  • 6Lechner T, Carrozza MJ, Yu Y, et al. Sds3 (suppressor of defective silencing 3) is an integral component of the yeast Sin3 Rpd3 histone deacetylase complex and is required for histone deacetylase activity. J Biol Chem 2000; 275:40961-40966.
  • 7McKinsey TA, Zhang CL, Lu J, et al. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation.Nature 2000; 400:106-111.
  • 8McKinsey TA, Zhang CL, Olson EN, et al. Identification of a signal-responsive nuclear export sequence in class Ⅱ histonedeacetylases. Mol Cell Biol 2001; 21:6312-6321.
  • 9McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA 2000; 97:14400-14405.
  • 10Vega RB, Harrison BC, Meadows E, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 2004;24:8374-8385.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部