期刊文献+

氯化钾反浮选药剂的膜技术分离研究 被引量:1

Application of Membrane Separation Technology in Potassium Chloride Reverse Flotation Reagent Separation
下载PDF
导出
摘要 以含氯化钾反浮选药剂料液为研究对象,将膜分离技术应用于盐湖卤水中氯化钾反浮选药剂分离,研究开展药剂含量、操作压力、温度、无机盐离子种类及含量等工艺条件对无机陶瓷膜和聚酰胺复合膜分离药剂效果影响。结果表明,药剂截留率随着药剂含量的增加而增加,随着膜孔径、料液温度的增大而减小,以操作压力小于1.5 MPa、料液温度低于30℃为宜。无机盐对聚酰胺复合膜通量影响显著,其中MgCl2影响最大;膜通量随着盐含量的升高而下降,药剂截留率均随着盐浓度的升高而逐渐增加;20℃,操作压力1.0 MPa,料液浓度400 mg/L时,聚酰胺复合膜1、2、3对药剂截留率分别达到98.5%、94.9%、89.9%。 Taking the potassium chloride reverse flotation reagent liquid as the research object, the membrane separation technology was applied to the separation of potassium chloride reverse flotation reagent in salt lake brine, and the effects of technological conditions such as reagent content, operating pressure, temperature, type and content of inorganic salt ions on the reagent separation efficiency by inorganic ceramic membrane and polyamide composite membrane were studied. The results showed that, the interception rate of reagent increased with the increase of the reagent content, decreased with the increase of the pore size of the membrane and the temperature of the feed liquid, and the suitable operating pressure was less than 1.5 MPa, and the temperature of the feed liquid was lower than 30 ℃. Inorganic salts had a significant effect on the flux of organic membranes, of which MgCl2 had the greatest influence. The membrane flux decreased with the increase of salt content, and the interception rate of medicament increased with the increase of salt content. When temperature was 20 ℃, the operating pressure was 1.0 MPa, mass concentration of feed liquid was 400 mg/L, the interception rate of reagent by polyamide composite membrane 1, 2, 3 reached 98.5%, 94.9% and 89.9% respectively.
作者 郭会宾 GUO Huibin(Qinghai Chemical Design and Research Institute Co., Ltd,Qinghai Province Engineering Technology Research Center of Fine Chemical, Xining 810008, China)
出处 《水处理技术》 CAS CSCD 北大核心 2019年第9期130-132,共3页 Technology of Water Treatment
基金 青海省科技厅应用基础研究计划项目(2017-ZJ-747)
关键词 纳滤膜 分离 浮选药剂 截留率 应用研究 nanofiltration membrane separation flotation reagent interception rate application research
  • 相关文献

参考文献3

二级参考文献26

  • 1丁一,梁恒国,鲁建举.微污染水处理技术现状与展望[J].西南给排水,2004,26(4):17-19. 被引量:6
  • 2严加松,龙军,田辉平.两种铝基粘结剂性能差异的结构分析[J].石油炼制与化工,2004,35(12):33-36. 被引量:15
  • 3GB8978-1996.污水综合排放标准[S].[S].,..
  • 4时均 袁权.膜技术手册[M].北京:化学工业出版社,2001..
  • 5McClellan S A.Membrane Process Technology Basics-Nanofiltration[J]. Ultrapure Water, 1995,10:39-46.
  • 6Watson B M, Hornburt C D. Low-Energy Membrane Nanofiltration for Removal of Color, Organics and Hardness From Drinking Water Supplies[J]. Desalination, 1989,72:11-22.
  • 7Raman L P, Cheryan M, Rajagopolan N. Consider Nanofiltration for Membrane Separation [J]. Chem Eng Prog., 1994, 3:68-74.
  • 8M A Barakat. New trends in removing heavy metals fi-om industrial wastewater[J].Arabian Journal of Chemistry,2011 (4):361-377.
  • 9Tansel Benin. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects[J].Separation and Purification Technology,2012,86:119-126.
  • 10E R Nightingale Jr. Phenomenologieal theory of ion solvation effective radii of hydrated ions[J].Phys Chem,1959,63(9): 1381-1387.

共引文献63

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部