摘要
探讨了带有随机切换非线性和混合时滞的不确定神经网络的非脆弱状态估计问题.首先,给出了所研究神经网络的数学模型;其次,基于有效信息设计非脆弱状态估计器,采用范数有界不确定性刻画了状态估计器增益矩阵的摄动现象;再次,基于Lyapunov稳定性定理给出了新的线性矩阵不等式描述的稳定性条件;最后,给出了仿真实验验证所提出的状态估计算法的可行性.
In this paper, the non-fragile state estimation problem is discussed for uncertain neural networks with stochastic switched nonlinear and mixed delays. Firstly, the mathematical model of the neural network studied is given. Secondly, the non-fragile state estimator is designed based on available information. The perturbation phenomenon of state estimator gain matrix is characterized by the norm bounded uncertainty. Thirdly, the stability condition in terms of the new linear matrix inequality description is given based on the Lyapunov stability theorem. Finally, the simulation experiment is given to illustrate the feasibility of the proposed state estimation algorithm.
作者
杜君花
吴晓丹
DU Jun-hua;WU Xiao-dan(College of Science, Qiqihar University, Qiqihar 161006, China;College of Science, Harbin University of Science and Technology, Harbin 150080, China)
出处
《数学的实践与认识》
北大核心
2019年第15期262-269,共8页
Mathematics in Practice and Theory
基金
黑龙江省省属高等学校基本科研业务费科研项目(135209250)
齐齐哈尔大学教育科学研究项目(2017028)
关键词
离散神经网络
无穷分布式时滞
时变时滞
随机切换非线性
非脆弱状态估计
discrete neural networks
infinite distributed delays
time-varying delays
stochastic switching nonlinearities
non-fragile state estimation