期刊文献+

基于FLOW HEAT的地下水源热泵一抽多灌井群优化布置数值研究 被引量:2

Numerical Simulation of Ground-water Heat Pump System of Pumping with Multi-Irrigation Based on FLOW HEAT
下载PDF
导出
摘要 为研究一抽多灌井群的最佳布置方式,基于FLOW HEAT软件,将抽水井附近的灌水井群采用集中环绕型、直线型等8种不同布置方式建立数学模型,分析抽水井水温变化规律、温度和渗流场及最佳井距。结果表明,采用以抽水井为中心回灌井环绕布置方式时井群影响范围较小,渗流效果也较好,但抽水井水温较高易发生热贯通现象;采用直线型布置方式时抽水井水温变化较慢、井群渗流效果一般;井群水温随井距的增加逐渐降低。综合考虑,抽水井在回灌井中间的直线型布置且井距为51.63m为最佳布置方式。 In order to study the optimal arrangement of an pumping with multi-irrigational well,based on FLOW HEAT software,the mathematical model of eight different arrangements,such as centralized arrangement and linear arrangement,was established for the irrigation well group near the pumping well,respectively.Analysis was conducted from the temperature,seepage field and optimal distance of heat well.The results show that the water temperature of pumping well was higher,the influence range was smaller and the seepage effect was better with the arrangement of multi-irrigation around the pumping well.However,the water temperature was lower and the seepage effect was general with the linear layout of the multi-irrigation near the pumping well.The water temperature of pumping well decreased for the increasing distances of well.After comprehensive consideration,the linear arrangement of irrigational wells near the pumping well,with the distance of well of 51.63 mis the optimal arrangement.
作者 周强 王楠 ZHOU Qiang;WANG Nan(School of Water Conservancy&Environment Engineering,Changchun Institute of Technology,Jilin 130012,China)
出处 《水电能源科学》 北大核心 2019年第9期124-127,共4页 Water Resources and Power
基金 吉林省教育厅“十三五”科学技术项目(JJKH20170518KJ)
关键词 地下水源热泵 一抽多灌 井距 FLOW HEAT 数值研究 ground-water source heat pump an pumping with multi-irrigation distance of well FLOW HEAT numerical study
  • 相关文献

参考文献4

二级参考文献30

  • 1荣丽杉,刘高焕,束龙仓,宋创业,黄翀.黄河三角洲地下水生态水位埋深研究[J].水电能源科学,2010,28(6):92-95. 被引量:17
  • 2欧阳莉,刘伟.多孔介质双层玻璃幕墙传热与流动特性[J].水电能源科学,2010,28(6):163-164. 被引量:3
  • 3苑杰,陈晓飞.棕壤盐水入渗水分运移特征研究[J].水电能源科学,2010,28(5):98-100. 被引量:2
  • 4Zhang S J, Wang H X, Guo T. Experimental Investigation of Moderately High Temperature Water Source Heat Pump with Non-azeotropic Refrigerant Mixtures [J]. Applied Energy, 2010, 87(5):1 554-1 561.
  • 5Wang H J, Qi C Y, Wang E Y, et al. A Case Study of Underground Thermal Storage in a Solar-ground Coupled Heat Pump System for Residential Buildings[J]. Renewable Energy, 2009, 34(1) .307-314.
  • 6Trinkl C, Zorner W, Hanby V. Simulation Study on a Domestic Solar/Heat Pump Heating System Ineorporating Latent and Stratified Thermal Storage [J]. Journal of Solar Energy Engineering, 2009, 131 (4) :041008-1-041008-8.
  • 7刘银海,陈淑芬,苏宛新,等.中国水电顾问集团成都院温江办公区岩土工程勘察报告[R].成都:中水集团成都勘测设计研究院地质分院,2007.
  • 8Sanner B, Karytsas C, Mendrinos D, et al. Current status of ground source heat pumps and underground thermal energy storage in Europe[J]. Geothermics, 2003,32:579-588.
  • 9Paksoy H O. Underground thermal energy storage:A choice for sustainable future [EB/OL]. http ://www. worldenergy.org, 2001-09-25.
  • 10Molz F J, Warman J C, Jones T E. Aquifer storage of heated water(Part Ⅰ ): field experiment[J]. Ground Water, 1978,16(6) :234-241.

共引文献50

同被引文献29

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部