期刊文献+

一种改进的面向差分隐私保护的k-means聚类算法 被引量:2

An Improved k-means Clustering Algorithm for Differential Privacy Protection
下载PDF
导出
摘要 笔者介绍了差分隐私保护的研究背景、差分隐私保护的基本原理和方法,分析了k-means算法的隐私泄露问题。针对传统面向差分隐私保护k-means算法存在簇中心选取随机性导致聚类可用性较低的问题,提出一种指数加噪机制与密度估计相结合的方法,选取初始聚类中心,从而保证初始中心挑选的合理性,保障样本数据的隐私性。实验结果表明,提出的新方法可以显著提高聚类结果的可用性。 This paper introduces the research background of differential privacy protection, the basic principles and methods of differential privacy protection, and analyses the privacy leakage of K-means algorithm. Aiming at the problem of low clustering availability caused by randomness of cluster center selection in traditional K-means algorithm for differential privacy protection, a method combining exponential noise-adding mechanism with density estimation is proposed to select initial cluster centers, so as to ensure the rationality of initial center selection and the privacy of sample data. The experimental results show that the proposed method can significantly improve the availability of clustering results.
作者 赵莉 付世凤 Zhao Li;Fu Shifeng(Hunan College of Information, Changsha Hunan 410200, China)
出处 《信息与电脑》 2019年第14期49-52,共4页 Information & Computer
基金 国家自然科学基金“大数据环境下的数据查询隐私保护技术研究”(项目编号:61472131)
关键词 隐私保护 差分隐私 K-MEANS 聚类算法 privacy protection differential privacy k-means clustering algorithm
  • 相关文献

参考文献5

二级参考文献126

  • 1Blum A,Dwork C,McSherry F,et al.Practical Privacy:The SuLQ Framework[C] //24th ACM SIGMOD International Conference on Management of Data / Principles of Database Systems,Baltimore (PODS 2005).Baltimore,Maryland,USA,June 2005.
  • 2Dwork C.Differential Privacy[C] //33rd International Colloquium on Automata,Languages and Programming,part Ⅱ (ICALP 2006).Venice,Italy,Springer Verlag,July 2006.
  • 3Dwork C.Differential Privacy:A Survey of Results[C] //Theory and Applications of Models of Computation(TAMC2008).Xi'an,China,Springer Verlag,April 2008.
  • 4Dwork C.The Differential Privacy Frontier[C] //6th Theory of Cryptography Conference (TCC 2009).San Francisco,CA,Springer Verlag,March 2009.
  • 5Dwork C.Differential Privacy in New Settings[C] //Symposium on Discrete Algorithms (SODA),Society for Industrial and Applied Mathematics.Austin,TX,January 2010.
  • 6Dwork C.A Firm Foundation for Private Data Analysis[J].Communications of the ACM,2011,54 (1):86-95.
  • 7Dwork C.The Promise of Differential Privacy.A Tutorial on Algorithmic Techniques[C] // 52nd Annual IEEE Symposium on Foundations of Computer Science.Palm Springs,CA,October 2011.
  • 8Agrawal R,Strikant R.Privacy-preserving data mining[C] //Proceedings of the 2000 ACM SIGMOD International Conference on Managementof Data.Dallas,Texas,May 2000:439-450.
  • 9Sweeney L.K-anonymity:A Model for Protecting Privacy[J].International Journal on Uncertainty[J].Fuzziness and Knowledge-based Systems,2002,10 (5):557-570.
  • 10Lindell Y,Pinkas B.Privacy preserving data mining[C] // Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology.Santa Barbara,California,August 2000:36-54.

共引文献318

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部