期刊文献+

采用高效卷积算子的长期目标追踪算法 被引量:4

Long-term Tracking Based on Efficient Convolution Operator
下载PDF
导出
摘要 针对目标跟踪中存在的对严重遮挡和出视野的目标跟踪失败的问题,提出了一种基于高效卷积算子的长期目标追踪算法.该算法首先利用滤波器的检测得分计算当前目标是否受到遮挡,停止对遮挡目标尺度模型的更新;然后利用遮挡情况和外观模型置信度判断目标的可靠性,对不可靠目标的模型不计入外观模型更新序列中.当目标长期遮挡或者丢失时,利用融合空间权重、目标检测得分和最佳伙伴相似性得分来重定位目标.与原始的高效卷积算子算法进行对比实验的结果表明,改进的算法能有效地解决目标遮挡和出视野情况下的目标跟踪失败的问题,具有较高的跟踪精度和鲁棒性. Aiming at the problem of failing to track the severely occluded and out of sight target,a long-term tracking algorithm based on Efficient Convolution Operators for Tracking is proposed. First,the score of filter detection is used to calculate whether the current target is occluded and stop updating the occlusion target scale model in this algorithm. Then,the occlusion and the confidence of appearance model are used to judge the reliability of the target. When the target is occluded or lost for a long time,the fusion space weight,detection scores of the target and the best partner similarity score are used to reposition the target position. Compared with the original Efficient Convolution Operators for Tracking,the experimental results show that the improved algorithm can solve the problem of target tracking failure in the case of occlusion and out of sight. This algorithm has high tracking accuracy and robustness.
作者 李国友 张凤煦 纪执安 LI Guo-you;ZHANG Feng-xu;JI Zhi-an(Key Laboratory of Industrial Computer Control Engineering,Yanshan University,Qinhuangdao 066004,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第9期1951-1955,共5页 Journal of Chinese Computer Systems
基金 河北省高等学校科学技术研究青年基金项目(2011139)资助 河北省自然科(F2012203111)资助
关键词 长期跟踪 出视野 遮挡 高效卷积算子 最佳伙伴相似性 long-term tracking out of sight occlusion efficient convolution operators best-buddies similarity
  • 相关文献

参考文献5

二级参考文献40

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2HARE S, SAFFARI A, TORR P H S. Structured output tracking with kernels [ C] // Proceedings of the 2011 IEEE International Con- ference on Computer Vision. Piscataway: IEEE, 2011:263 -270.
  • 3KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detec- tion [ J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2012, 34(7) : 1409 - 1422.
  • 4BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online nmltiple instance learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8) : 1619 - 1632.
  • 5ZHANG K, ZHANG L, YANG M H. Real-time compressive track- ing [ M]// ECCV 2012: Proceedings of the 12th European Confer- ence on Computer Vision, LNCS 7574. Berlin: Springer, 2012: 64 - 877.
  • 6BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual ob- ject tracking using adaptive correlation filters [ C]// Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recogni- tion. Piscataway: IEEE, 2010:2544-2550.
  • 7ZHANG K, ZHANG L, YANG M H, et al. Fast tracking via spatio- temporal context learning [ EB/OL]. [ 2015- 05- 01 ]. http://azad- project, ir/wp-content/uploads/2014/07/Fast -Tracking-via-Spatio-Tem- poral - Context - Learning. pdf.
  • 8HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels [ C]//EC- CV 2012: Proceedings of 12th European Conference on Computer Vision, LNCS7575. Berlin: Springer, 2012:702-715.
  • 9DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking [ C ]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway; IEEE, 2014: 1090- 1097.
  • 10van de WEIJER J, SCHMID C, VERBEEK J, et al. Learning col- or names for real-world applications [ J]. IEEE Transactions on Im- age Processing, 2009, 18(7): 1512-1523.

共引文献221

同被引文献29

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部