期刊文献+

车内异响自动识别方法研究

Research on Automatic Recognition Method of Vehicle Abnormal Noise
下载PDF
导出
摘要 车内异响的识别是改进优化异响声源的前提。根据异响声音信号非平稳突变的特点,提出一种基于Mel频率倒谱系数、小波包能量和支持向量机的车内异响识别方法。分别提取各种异响声音的Mel频率倒谱系数和小波包能量参数,以此作为支持向量机的输入向量,实现对车内常见的4种异响声音的识别。实验结果表明,该方法可有效识别4种常见的车内异响声音,且与实验人员主观评价的方法相比,其分类的准确率可提高到90%以上。 Recognition of abnormal sound in vehicle is the premise of improving and optimizing abnormal sound source. Based on the characteristics of non-stationary mutation of abnormal sound signal, this paper proposes a method of vehicle interior abnormal sound recognition based on Mel frequency Cepstrum coefficient, wavelet packet energy and support vector machine.Mel frequency Cepstrum coefficients and wavelet packet energy parameters of various abnormal sounds are extracted respectively, which are used as input vectors of Support Vector Machine(SVM)to recognize 4 common abnormal sounds in the car. The experimental results show that this method can effectively recognize 4 kinds of common interior noise, and the classification accuracy can be improved to more than 90% compared with the subjective evaluation method of the experimenters.
作者 顾灿松 房宇 王东 Gu Cansong;Fang Yu;Wang Dong(China Automotive Technology & Research Center,Tianjin 300162;Jiangsu University,Zhenjiang 212013)
出处 《汽车文摘》 2019年第10期21-25,共5页 Automotive Digest
关键词 车内异响识别 MEL频率倒谱系数 小波包能量 支持向量机 NVH Vehicle interior noise recognition Mel Frequency Cepstrum Coefficient (MFCC) Wavelet packet energy Support Vector Machine(SVM) NVH
  • 相关文献

参考文献5

二级参考文献37

  • 1戎丽霞.基于最优小波包基的信号去噪算法[J].德州学院学报,2005,21(2):72-75. 被引量:9
  • 2苏丽,赵国良,张仁彦.基于改进小波阈值法的平移不变心电信号去噪[J].哈尔滨工程大学学报,2006,27(6):839-843. 被引量:13
  • 3王双维,陈强,李江,魏洪峰,杜丽萍,赵丽华.不同车型的车辆声音与振动信号特征研究[J].声学技术,2007,26(3):460-463. 被引量:9
  • 4周宗潭,董国华等译.芬兰Aapo Hyvarinen,Juha Karhunen,Erikki Oja著.独立成分分析[M].北京:电子工业出版社,2007.
  • 5王道平,张义忠.故障智能诊断系统的理论与方法[M].北京:冶金工业出版社,2003:6-20.
  • 6A. Huvarinen, J. Karhunen, E. Oja. Independent Compo- nent Analysis[ M]. New York ,John Wiley,2001.
  • 7杜展.基于ARM处理器和嵌入式操作系统Clinux的WebServer实现[D].上海:上海交通大学,2006.
  • 8Chen Zezhi, PEARS N, FREEMAN M. A gaussian mixture model and support vector manchine approach to vehicle type and colour classification [J]. Intelligent Transport Systems ,IET,2014,8(2) : 135-144.
  • 9DUARTE M F, HU Y H. Vehicle classification in distributed sensor networks [J]. Journal of Parallel and Distributed Computing, 2004,64 (7) : 826-835.
  • 10SHARMA N, JAIRATH A K, SINGH B, et al. Detection of variou s vehicles using wireless seismeicsensor network [C]. 2012 Inernational Conference on Advances in Mobile Network, Communication and its Application ( MNCAPPS ). Bangalore : IEEE, 2012 : 149-155.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部