摘要
指数不定方程是一类重要的不定方程,Jesmanowicz-Terai猜想就属于指数不定方程的内容,对此国内外许多学者都对此进行了研究,取得了很多重要的结果。本文利用初等方法,主要是因式分解和简单同余方法并结合Catalan's猜想的基本结论,即两个连续的方幂数有且仅有8和9,得到了一类特殊的指数型丢番图方程p^x+p^y=z^n(n>1)的全部非负整数解,我们证明了该方程当p为奇素数时,它的解与麦什涅素数对应。本文得到的结果改进了Tatong-Suvarnamaniv和Dibyajyoti的结果。
The exponential Diophantine equation is a class of important Diophantine equation,the content of which includes Jesmanowicz-Terai conjecture.Many scholars at home and abroad have studied it and obtained many significant results.In this paper,all non-negative integer solutions of a special exponential Diophantine equation p^x+p^y=z^n(n >1) are obtained by elementary methods (mainly factorization and simple congruence methods) and the basic conclusion of Catalan's conjecture (i.e.there are only 8 and 9 consecutive power numbers).It is proved that its solutions correspond to Mersenne's prime number when p is an odd prime number.The results obtained in this paper have improved the results of Tatong-Suvarnamaniv and Dibyajyoti.
作者
费双林
罗家贵
苑小丹
FEI Shuanglin;LUO Jiagui;YUAN Xiaodan(College of Mathematics and Information,China West Normal University,Nanchong Sichuan 637009,China;Foreign Trade and Business College,Chongqing Normal University,Chongqing 401520,China)
出处
《西华师范大学学报(自然科学版)》
2019年第3期268-270,共3页
Journal of China West Normal University(Natural Sciences)
基金
国家自然科学基金项目(10571180)
四川省教育厅重大培育项目(16ZA0173)
关键词
丢番图方程
非负整数解
素数
正整数解
Diophantine equation
non-negative solution
prime
positive solution