摘要
针对开关磁阻电机调速系统(SRD)中功率变换器单管短路故障和传感器噪声故障,提出将k-邻近算法(kNN)和极限学习机(ELM)相结合的自适应滑窗故障诊断方法。通过对故障进行分析,采集三相定子电流作为原始数据,将快速傅里叶变换和ReliefF算法用于特征提取与选择,形成kNN算法与ELM算法相结合的多窗口自适应故障诊断机制。通过离线与在线仿真实验,证明了该方法诊断速度快,精度高。
Aiming at the single-tube short-circuit fault and sensor noise fault of power converter in switched reluctance motor drive(SRD),an adaptive sliding window fault diagnosis method combining k-nearest neighbor(k NN)algorithm and extreme learning machine(ELM)was proposed.The fault was analyzed and the three-phase stator current were collected as the original data.The fast fourier transform and ReliefF algorithm were used for feature extraction and selection.A multi-window adaptive fault diagnosis structure combining k NN algorithm and ELM algorithm was set up.Through offline and online simulation experiments,it is proved that the method has high diagnostic speed and high precision.
作者
杨文浩
苟斌
雷渝
宋潇潇
王军
YANG Wen-hao;GOU Bin;LEI Yu;SONG Xiao-xiao;WANG Jun(School of Electrical Engineering and Electronic Information,Xihua University,Chengdu 610039,China;Sichuan Province Key Laboratory of Power Electronics Energy-Saving Technologies & Equipment,Chengdu 610039,China)
出处
《微特电机》
2019年第9期7-13,共7页
Small & Special Electrical Machines
基金
教育部春晖计划(Z2017082)
西华大学研究生创新基金(ycjj2019104)
关键词
开关磁阻电机调速系统
功率变换器
传感器
K-近邻算法
极限学习机
switched reluctance motor drive(SRD)
power converter
sensor
k-nearest neighbor(k NN)
extreme learning machine(ELM)