摘要
针对永磁同步电机的非线性特性,研究了一种永磁同步电机有限时间动态面位置跟踪控制的方法。动态面技术的引入解决了在传统电机反步控制中存在的“计算爆炸”问题,神经网络技术用于近似系统中的非线性项。采用有限时间技术加快了系统的收敛速度,同时改善了系统的控制效果,并提高了系统的抗干扰能力。仿真结果表明该控制方法可以有效实现对永磁同步电动机的位置跟踪控制。
According to the nonlinear characteristics of the permanent magnet synchronous motor,a permanent magnet synchronous motor finite time dynamic surface position tracking control method was studied.The dynamic surface technology was introduced to solve the"computational explosion"problem in the traditional motor backstepping control.Neural network was used to approximate the nonlinear terms in the system.The finite time was used to improve the convergence speed of the system.The control effect and the anti-interference ability of the system were improved.The simulation results show that the control method can complete the position tracking control of permanent magnet synchronous motor.
作者
胡成江
于金鹏
于海生
付程
HU Cheng-jiang;YU Jin-peng;YU Hai-sheng;FU Cheng(Qingdao University,Qingdao 266071,China)
出处
《微特电机》
2019年第9期58-63,共6页
Small & Special Electrical Machines
基金
国家重点研发计划(2017YFB1303503)
国家自然科学基金项目(61573204,61573203)
泰山学者工程专项经费资助项目(TSQN20161026)
关键词
永磁同步电机
有限时间跟踪
动态面控制
神经网络
permanent magnet synchronous motor(PMSM)
finite time tracking
dynamic surface control
neural network