期刊文献+

基于重叠社区的影响力最大化算法 被引量:6

Influence Maximization Algorithm Based on Overlapping Community
原文传递
导出
摘要 【目的】针对影响力最大化问题中贪心算法时间效率低的局限,提出基于重叠社区的影响力最大化算法。【方法】基于重叠社区,综合传播度最大的节点和重叠节点选出候选种子集,并采用CELF算法确定最优种子集,从而提高影响范围。【结果】实验数据表明,在亚马逊数据集上IM-BOC算法运行时间最大幅度能够提高约89%。【局限】仅凭社区节点的数量分配候选种子节点的数量,可能存在一定误差。【结论】基于重叠社区的IM-BOC算法在保证影响范围的前提下,适用于大型社交网络。 [Objective] This paper proposes a new algorithm for influence maximization based on overlapping community, called IM-BOC algorithm, aiming to the low efficiency of greedy algorithm.[Methods] This method selects candidate seed set by combing propagation degree and k-core firstly, then it utilizes CELF algorithm to ensure the optimal seed set, which can improve both efficiency and accuracy.[Results] The experimental results show that running time of our algorithm can improve about 89% when facing Amazon dataset.[Limitations] Our IM-BOC algorithm allocates the number of candidate seeds only according to the number of community nodes, which has insufficient theoretical evidence.[Conclusions] IM-BOC algorithm is applicable to large scale networks under the premise of ensuring the influence spread.
作者 仇丽青 贾玮 范鑫 Qiu Liqing;Jia Wei;Fan Xin(College of Computer Science and Engineering, Shandong University of Science and Technology,Qingdao 266590, China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2019年第7期94-102,共9页 Data Analysis and Knowledge Discovery
基金 2018年度青岛市社会科学规划项目“社会网络视角下的情感图谱研究:以突发公共卫生事件为例”(项目编号:QDSKL1801103) 国家自然科学基金青年基金项目“时间演化尺度下大规模社会网络特征分析与社区结构挖掘”(项目编号:622814971) 山东科技大学优秀教学团队建设计划资助项目“嵌入式计算机技术系列课程群教学团队,程序设计技术系列课程群教学团队”(项目编号:JXTD20170503,JXTD20180503)的研究成果之一
关键词 社交网络 重叠社区 影响力最大化 Social Network Overlapping Community Influence Maximization
  • 相关文献

参考文献8

二级参考文献74

  • 1熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分[J].软件学报,2005,16(4):503-512. 被引量:87
  • 2KWAK H, LEE C, PARK H. What is Twitter, a social network or a news media[ C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM Press, 2010:591 -600.
  • 3WENG J, LIME P, JIANG J. TwitteRank: finding topic-sensitive influential twitterers[ C] // Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2010:261-270.
  • 4RICHARDSON M, DOMINGOS P. Mining knowledge-sharing sites for viral marketing[ C]// Proceedings of the Eighth ACM SIGKDD International Conference On Knowledge Discovery and Data Mining. New York: ACM Press, 2002:61-70.
  • 5WATTS D J. A simple model of global cascades on random networks [ J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9) : 5766 -5771.
  • 6GRANOVETYER M. Threshold models of collective behavior[ J]. American Journal of Sociology, 1978, 83(6) : 1420 - 1433.
  • 7KEMPE D, KLEINBERG J, TARDOS E. Maximizing the spread of influence through a social network[ C]// Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM Press, 2003:137 - 146.
  • 8LESKOVEC J, KRAUSE A, GUESTRIN C, et al. Cost-effective outbreak detection in networks[ C]// Proceedings of the 13th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2007:420 - 429.
  • 9CHEN W, WANG Y, YANG S. Scalable influence maximization for prevalent viral marketing in large scale social networks[ C]// Pro- ceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2010:807 - 816.
  • 10Domingos P, Richardson M. Mining the network value of customers//Proceedings of the 7th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001: 57-66.

共引文献71

同被引文献29

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部