期刊文献+

pH and H2O2 dual-responsive carbon dots for biocatalytic transformation monitoring 被引量:1

pH and H2O2 dual-responsive carbon dots for biocatalytic transformation monitoring
原文传递
导出
摘要 Development of sensitive biosensors for biocatalytic transformations monitoring is in high demand but remains a great challenge. It is ascribed to the current strategies that focused on the single metabolite detection, which may bring about the relatively low sensitivity and false diagnosis result. Herein, we report the design and fabrication of novel carbon dots(CDs) with strong orange light emission, pH and H2O2 dual-responsive characteristics. The fluorescence quenching of CDs by H+and H2O2 enables the highly sensitive detection of H+/H2O2-generating biocatalytic transformations. This is exemplified by the glucose oxidase-mediated catalytic oxidation reaction on glucose, in which H+and H2O2 would be formed. As compared to the case in which glucose is present, significant fluorescence reduction is detected, and the fluorescence intensity is negatively proportional to glucose concentration. Thus, highly sensitive detection of glucose was readily achieved with a detection limit down to 10.18 nmol/L. The prepared CDs not only realize the highly sensitive detection of glucose, but also allows the probing other substances by changing the enzymes, thus providing a versatile platform, and demonstrating good potential to be used for biocatalytic transformations effective monitoring. Development of sensitive biosensors for biocatalytic transformations monitoring is in high demand but remains a great challenge. It is ascribed to the current strategies that focused on the single metabolite detection, which may bring about the relatively low sensitivity and false diagnosis result. Herein, we report the design and fabrication of novel carbon dots(CDs) with strong orange light emission, pH and H2O2 dual-responsive characteristics. The fluorescence quenching of CDs by H+and H2O2 enables the highly sensitive detection of H+/H2O2-generating biocatalytic transformations. This is exemplified by the glucose oxidase-mediated catalytic oxidation reaction on glucose, in which H+and H2O2 would be formed. As compared to the case in which glucose is present, significant fluorescence reduction is detected, and the fluorescence intensity is negatively proportional to glucose concentration. Thus, highly sensitive detection of glucose was readily achieved with a detection limit down to 10.18 nmol/L. The prepared CDs not only realize the highly sensitive detection of glucose, but also allows the probing other substances by changing the enzymes, thus providing a versatile platform, and demonstrating good potential to be used for biocatalytic transformations effective monitoring.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第9期1635-1638,共4页 中国化学快报(英文版)
基金 funded by the National Natural Science Foundation of China (Nos. 21605093, 21775082 and 21575074) the Special Foundation for Distinguished Taishan Scholar of Shandong Province (No. ts201511052)
关键词 Carbon DOTS Dual-responsive PH H2O2 GLUCOSE Biocatalytic TRANSFORMATIONS Carbon dots Dual-responsive pH H2O2 Glucose Biocatalytic transformations
  • 相关文献

参考文献1

共引文献1

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部