期刊文献+

讲气方式对气升泵中气泡行为的影响

Effect of Air Intake Modes on Air Bubble Behavior in Airlift Pump
原文传递
导出
摘要 气升泵内气泡行为是气升泵提升效率、提升能力的关键影响因素,而气升泵的进气方式对气升泵内的气泡行为有重要影响。本文通过数值模拟和实验研究的方法,研究了不同气孔类型、不同气孔间距对于气泡上升变化以及流场变化的影响.结果表明:单一气泡上升形变过程一般为圆形-蘑菇形-梭形,当气泡数量增加,气泡相互间的影响导致气泡形状变化不规则;同一进气方式生成的连续气泡,后面生成的气泡加速度大于前面气泡的加速度;增加气孔间距离,竖直方向两气泡相比水平方向两气泡容易发生融合;增加气孔数量、减小气孔间距都可以使气升泵中液体速度增加。本研究对于气升泵的结构优化和提高作业效率有着重要的意义。 Air bubble behavior in the airlift pump is a key factor affecting the efficiency and capacity of the airlift pump,and the air intake mode has an important influence on the air bubble behavior within the airlift pump.Numerical simulation methods and experimental research methods are used to analyze the effects of different types of air holes and different air hole spacing on the change of rising bubble and flow field.The results show that the rising deformation process of a single bubble is generally round-mushroom-spindle.When the number of bubbles increases,the interaction between bubbles causes the shape of the bubble to change irregularly.The acceleration of the bubble generated later is greater than the bubble generated in the front which were generated by the same air intake mode.To increase the distance between the air holes,two bubbles in the vertical direction are more prone to fusion than in the horizontal direction.Increasing the number of air holes and decreasing the spacing can increase the liquid velocity in the air lift pump.This study has important implications for the structural optimization of airlift pumps and the improvement of operating efficiency.
作者 陈圣涛 张泽楠 弓永军 邱强 张增猛 CHEN Sheng-Tao;ZHANG Ze-Nan;GONG Yong-Jun;QIU Qiang;ZHANG Zeng-Meng(Naval Architecture and Ocean Engineering College,Dalian Maritime University,Dalian 116026,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2019年第9期2084-2093,共10页 Journal of Engineering Thermophysics
基金 自然科学基金(No.51409031) 中央高校基本科研业务费(No.3132019040)
关键词 气升泵 VOF方法 气泡行为 air-lift pump volume of fluid method bubble behavior
  • 相关文献

参考文献6

二级参考文献43

  • 1张淑君,吴锤结.气泡之间相互作用的数值模拟[J].水动力学研究与进展(A辑),2008,23(6):681-686. 被引量:26
  • 2陈斌,T.Kawamura,Y.Kodama.静止水中单个上升气泡的直接数值模拟[J].工程热物理学报,2005,26(6):980-982. 被引量:19
  • 3席光,项利峰.自由表面流动的移动粒子半隐式模拟方法[J].西安交通大学学报,2006,40(3):249-252. 被引量:19
  • 4端木玉,朱仁庆.流体体积方程的求解方法[J].江苏科技大学学报(自然科学版),2007,21(2):10-15. 被引量:9
  • 5Grace J R. Shapes and Velocities of Bubbles Rising in Infinite Liquids. Trans. Inst. Chem. Eng., 1973, 51:116
  • 6Grace J R, Wairegi T, Nguyen T H. Shapes and Velocities of Single Drops and Bubbles Moving Freely Through Immiscible Liquids. Trans. Inst. Chem. Eng., 1976, 54: 167
  • 7Ryskin G, Leal L G. Numerical Solution of Free-Boundary Problems in Fluid Mechanics, Part Ⅱ., Buoyancy-driven Motion of a Gas Bubble Through a Quiescent Liquid. Journal of Fluid Mechanics, 1984, 148:19
  • 8Takagi S, Matsumoto Y, Huang H. Numerical Analysis of a Single Rising Bubble Using Boundary-Fitted Coordinate System. Trans. Jpn. Soc. Mech. Eng. B, 1995, 61:1976
  • 9Clift R, Crace J R, Weber ME. Bubbles, Drops and Partides. Academic, 1978
  • 10Ryskin G, Leal L G. Numerical Solution of Free-Boundary Problems in Fluid Mechanics, Part Ⅰ., The Finite- Difference Technique. Journal of Fluid Mechanics, 1984, 148:1

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部