期刊文献+

CFI算子与(ω)性质

CFI Operators and Property(ω)
下载PDF
导出
摘要 根据一致Fredholm指标性质定义一种新的谱集,利用该谱集与Browder谱之间的关系给出Hilbert空间中有界线性算子满足(ω)性质的充要条件,并刻画多项式函数的(ω)性质. According to the property of consistence in Fredholm index,a new spectral set was defined.By using the relationship between the spectral set and Browder spectrum,the author gave the necessary and sufficient conditions for a bounded linear operator on a Hilbert space to satisfy the property(ω),and characterized the property(ω)of polynomial functions.
作者 戴磊 DAI Lei(School of Mathematics and Statistics, Weinan Normal University, Weinan 714099, Shaanxi Province, China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2019年第5期1007-1013,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11501419) 渭南师范学院特色学科建设项目(批准号:18TSXK03)
关键词 (ω)性质 一致Fredholm指标 property(ω) consistence in Fredholm index(CFI) spectrum
  • 相关文献

参考文献5

二级参考文献51

  • 1Gong W. B., Han D. G., Spectrum of the products of operators and compact perturbations the American Mathematical Society, 1994, 120: 755-760.
  • 2Weyl H., Uber beschrankte quadratische Formen, deren Diffcrenz vollstctig ist, Rend. Circ. 1909, 27: 373-392.
  • 3Proceedings of Mat. Palermo Harte R., Lee W. Y., Another note on Weyl's theorem, Trans. Amer. Math. Soc., 1997, 349: 2115-2124.
  • 4Rakodevic V., Operators obeying a-Wcyl's theorem, Rev. Roumaine Math. Pures Appl., 1989, 34: 915-919.
  • 5Rakodevic V., On a class of operators, Mat. Vesnik, 1985, 37: 423-426.
  • 6Berkani M., index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 2002, 130:1717-1723.
  • 7Cao X. H., Weyl spectrum of the products of operators, J. Korean Math. Soc., 2008, 45:771-780.
  • 8Berkani M., Koliha J. J., Weyl type theorems for bounded linear operators, Aeta Sci. Math. (Szeged), 2003 69: 379-391.
  • 9Taylor A. E., Theorcms on ascent, descent, nullity and defect of linear operators, Math. Ann., 1996, 163 18-49.
  • 10Dai L., Cao X. H., Sun C. H., A note on generalized property (w), Acta Mathematica Sinica 2010, 53(2): 219-226.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部