摘要
在图像检索领域,将三元组排序损失应用于深度神经网络权重的更新,可以使生成的图像表示保存更多的语义特征,但是三元组排序损失没有全面的考虑不同类别图像之间的关联。为此提出了一种四元组完备损失,此损失函数将图像类间相似性小于类内相似性的特点融入到损失函数的构建中。与三元组排序损失函数相比,此函数可以更全面地体现查询图像与同类和不同图像之间的相似性关系。进一步,本文还提出了一种有效的基于四元组的深度网络结构,可用于图像的哈希检索。实验结果表明,提出的方法能够在CIFAR-10、SVHN和NUS-WIDE图像库中取得良好的检索性能。
Tuning the weights of deep neural networks using loss and back propagation algorithm has been widely used in image retrieval. Applying triplet ranking loss to tune the weights can make the generated image representations preserve more semantic features. However, the relations among different categories of images are not fully considered in the triplet ranking loss.The quadruplet complete loss is proposed based on that inter-class similarity is smaller than the intra-class similarity, and the similarities among the query image and similar or dissimilar images are also fully considered in the loss.Further more, an effective quadruplet based deep hashing network architecture is also proposed for image retrieval. The experimental results show that our method can achieve excellent retrieval performance in CIFAR-10, SVHN and NUS-WIDE.
作者
朱杰
李楠
饶兴楠
王晶
吴树芳
ZHU Jie;LI Nan;RAO Xingnan;WANG Jing;WU Shufang(Department of Information Management, The National Police University for Criminal Justice, Baoding 071000, Hebei, China;College of Management and Economics, Tianjin University, Tianjin 300072, China;College of Management, Hebei University, Baoding 071002, Hebei, China)
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第5期49-56,共8页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家社会科学基金(17BTQ068)
河北省自然科学基金青年基金(F2018511002)
河北省高等学校科学技术研究(Z2019037)
中国博士后基金(2017M621078)
关键词
四元组完备损失
自适应间隔
哈希表示
图像检索
人工智能
quadruplet complete loss
adaptive margin
hash representation
image retrieval
artificial intelligence