期刊文献+

针对认知无线网络大规模入侵的双重防御方案 被引量:2

Dual defense scheme for large-scale intrusion in cognitive radio networks
下载PDF
导出
摘要 协作频谱感知(cooperative spectrum sensing,CSS)可有效提高频谱检测的准确性,然而,当次用户中恶意用户占比较大且同时发动大规模攻击时,将严重影响CSS的准确性。文中将用户选择和置信传播有机结合,提出一种针对大规模入侵的双重防御方案。基于本地感知结果通过用户选择机制挑选可靠次用户,挑选出的可靠次用户包括诚实用户和伪装成诚实用户的恶意用户。然后以可信度为权重计算置信值均值并将其和预设门限比较,进一步滤除伪装成诚实用户的恶意用户。仿真结果表明,与已有的简单的基于信誉的方案、基于均值的方案、基于克隆节点的攻击检测算法相比,所提方案具有更好的检测性能,且置信值收敛更快。 Cooperative spectrum sensing (CSS) improves the accuracy of spectrum detection. However, when there are a large number of malicious users in secondary users, malicious users will launch large-scale attacks , which will seriously affect the CSS results. A user selection and belief propagation based dual defense scheme for large-scale intrusion is proposed. Based on the results of local spectrum sensing,a user selection scheme is used to pick out reliable secondary users which include honest users and malicious users pretending to be honest. Then, the belief values of secondary users will be calculated by the belief propagation scheme and the mean of belief values is calculated with the reliabilities as the weights and compared with the preset threshold to further detect the malicious users. Simulation results show that the proposed scheme has better detection and convergence performance than the existing detection algorithm such as simple reputation-based scheme, mean-based scheme and lightweight cloned-node detection algorithm.
作者 季薇 陈青青 郑宝玉 JI Wei;CHEN Qingqing;ZHENG Baoyu(College of Telecommunication & Information Engineering, Nanjing University ofPosts and Telecommunications, Nanjing 210003, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2019年第10期2352-2358,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61471200,61603197,61671253) 江苏高校优势学科建设工程资助课题
关键词 协作频谱感知 入侵防御 用户选择 置信传播 信誉机制 cooperative spectrum sensing (CSS) intrusion prevention user selection belief propagation reputation
  • 相关文献

参考文献2

二级参考文献1

共引文献7

同被引文献31

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部