摘要
讨论了含有Caputo-Katugampola分数阶导数的分数阶微分方程解的全局吸引性.首先将微分方程转化为积分方程,再利用Schauder不动点定理得到解的存在性,最后利用所构造集合的性质得到相关结论.
In this paper , we present results for the global attractivity of solutions of fractional differential equations involving Caputo- Katug ampola fractional calculus. By transforming the differential equations into an integral equations,the existence of the solutions is obtained by using the Schauder's fixed point theorem , andsome related conclusions are obtained by using the properties of the constructional set of the solutions.
作者
李艳峰
郝燕朋
王二静
李巧銮
LI Yanfeng;HAO Yanpeng;WANG Erjing;LI Qiaoluan(College of Mathematics and Information Sciences,Hebei Normal University, Hebei Shijiazhuang 050024,China)
出处
《河北师范大学学报(自然科学版)》
CAS
2019年第4期282-287,共6页
Journal of Hebei Normal University:Natural Science
基金
国家自然科学基金(11571090)
河北师范大学创新资助项目(CXZZSS2018061)
关键词
分数阶微分方程
解的吸引性
不动点定理
fractional differential equations
attractive of solutions
fixed-point theorem