期刊文献+

复杂网络基于最小驱动节点的能控性优化(英文) 被引量:1

Optimizing Controllability of Complex Networks by Minimum Driver Nodes
原文传递
导出
摘要 在这篇文章中讨论了两个核心问题,分别是最小输入问题和输入信号对节点的控制问题.利用图论和矩阵理论,找到了具有强控制集中性和强控制能力的最优的最小驱动节点集.首先,确定了驱动节点的最小数量.然后,通过两种方法确定了最优的最小驱动节点集,一种是分析节点i的控制集中性,另一种是查找控制信号u^+(t)和具有强控制能力的节点i之间有用的连接添加.最后,输入信号被施加到最优的最小驱动节点上以使得网络能控.同时,关于最优的最小驱动节点集的算法也被提出用于复杂网络能控性的研究. Two core issues are studied in this paper,which are,respectively,the minimal number of input signals and how the input signal is injected to a controlled node to ensure complete controllability of a network.By taking advantage of graph and matrix theory,we focus on finding the optimal minimum driver nodes set with strong control centrality and strong control ability.Firstly,the minimum number of driver nodes is determined.Secondly,the optimal minimum driver nodes set is decided by two ways.One is analyzing the control centrality of node i,and the other is searching the optimal connection added between new control signal u^+(t)and state node i with strong control ability.Finally,the input signals are injected to the optimal minimum driver nodes to make the network controllable.Moreover,the algorithm of finding out the optimal minimum driver nodes set is also proposed for the controllability of complex networks.
作者 沈聪 纪志坚 张萍萍 侯婷 SHEN Cong;JI Zhijian;ZHANG Pingping;HOU Ting(College of Automation and Electrical Engineering,Qingdao University,Qingdao 266071;College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao,266590)
出处 《系统科学与数学》 CSCD 北大核心 2019年第5期659-674,共16页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61873136,61374062,61603288) 山东省杰出青年基金(JQ201419) 山东省自然科学基金(ZR2015FM023,ZR2016JL022)资助课题
关键词 能控性 控制集中性 节点控制能力 最优的最小驱动节点集 Controllability control centrality nodes control ability optimal minimum driver nodes set
  • 相关文献

参考文献3

二级参考文献25

  • 1潘灶烽,汪小帆.一种可大范围调节聚类系数的加权无标度网络模型[J].物理学报,2006,55(8):4058-4064. 被引量:36
  • 2李牧南,杨建梅,汤玮亮.基于复杂网络的产品竞争网的特性研究[J].电子测量技术,2007,30(4):9-11. 被引量:6
  • 3Liu Y Y, Slotine J J, Barabsi A L. Controllability of complex networks. Nature, 2011, 473(7346): 167-173.
  • 4Ji Z J, Lin H, Yu H S. Protocols design and uncontrollable topologies construction for multi-agent networks. IEEE Transactions on Automatic Control, 2015, 60(3): 781 786.
  • 5Ji Z J, Wang Z D, Lin H, Wang Z. Controllability of multi-agent systems with time-delay in state and switching topology. International Journal of Control, 2010, 83(2): 371 386.
  • 6Lin C T. Structural controllability. IEEE Transactions on Automatic Control, 1974, 19(3): 201- 208.
  • 7Gabow H N. An efficient implementation of edmonds' algorithm for maximum matching on graphs. Journal of the ACM (JACM), 1976, 23(2): 221 234.
  • 8Zhou H J, Ou Y, Zhong C. Maximum matching on random graphs, arXiv preprint cond- mat/0309348, 2003.
  • 9Henrique G, Ramos C. Structural hybrid systems. PhD Thesis, MSc Thesis, Instituto Superior Tcnico. 2013.
  • 10Liu Y Y, Slotine J J, Barabdsi A L. Control centrality and hierarchical structure in complex networks. Plos One, 2012, 7(9): e44459.

共引文献6

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部