摘要
针对一类转移概率部分未知的Markovian跳变系统,考虑系统中存在时变时滞以及执行器饱和的情况,研究此类系统基于干扰观测器的抗干扰控制(Disturbance-observer-based-control, DOBC)问题.首先,分析带有扰动估计误差的闭环系统的随机稳定性,通过构建适当的模态依赖型Lyapunov-Krasovskii(L-K)泛函并引入自由权矩阵,给出闭环系统的随机稳定性判据;然后,将控制器增益以及观测器增益的求解问题转化为带有线性矩阵不等式约束的可行性问题,并通过迭代优化算法得到最大吸引域的估计值;最后,通过仿真算例,验证所提出方法的正确性和有效性.
This paper is concerned with the problem of the stochastic stability analysis and controller design of the time-delay Markovian jump system with disturbance and actuator saturation. The stochastic stability problem of the closed-loop system with disturbance estimation error is analyzed. By constructing the appropriate mode-dependent Lyapunov-Krasovskii functions and introducing the free-connection weighting matrices, the random stability criterions of the closed-loop system are given. By transforming it into a feasible problem with linear matrix inequalities, the gain matrices are acquired. And the estimation of maximized attractive domain is obtained by an iterative optimization algorithm. Finally, the simulation results show the effiectiveness of the proposed method.
作者
高倩
高宪文
齐文海
GAO Qian;GAO Xian-wen;QI Wen-hai(College of Information Science and Engineering,Northeastern University,Shenyang 110004,China;College of Engineering,Qufu Normal University,Rizhao 276826,China)
出处
《控制与决策》
EI
CSCD
北大核心
2019年第9期1857-1866,共10页
Control and Decision
基金
国家自然科学基金项目(61573088,61573087,61433004)