摘要
A stall warning approach based on aero-acoustic theory is studied in this paper. For this stall warning approach, a parameter Rc is defined to measure the periodicity of the blade-passing signal. Signal simulation is used to investigate the mechanism of the stall warning approach. The results suggest that the value of Rc is influenced by the power of the perturbations. The experiments on a two-stage compressor indicate this stall warning approach can generate a warning signal several seconds before the stall. It is demonstrated in this paper that the stall warning approach can detect the distribution and evolution of stall precursors. According to the distribution of the stall precursors, the partial stall precursor-suppressed casing treatment is applied and realized a stabilization of compressor.
A stall warning approach based on aero-acoustic theory is studied in this paper. For this stall warning approach, a parameter Rc is defined to measure the periodicity of the blade-passing signal. Signal simulation is used to investigate the mechanism of the stall warning approach. The results suggest that the value of Rc is influenced by the power of the perturbations. The experiments on a two-stage compressor indicate this stall warning approach can generate a warning signal several seconds before the stall. It is demonstrated in this paper that the stall warning approach can detect the distribution and evolution of stall precursors. According to the distribution of the stall precursors, the partial stall precursor-suppressed casing treatment is applied and realized a stabilization of compressor.
基金
supported by China Academy of Launch vehicle Technology (No.51606223)
National Natural Science Foundation of China (Nos. 11661141020, 51576008, 51822601 and 51790514)