期刊文献+

A Robust Blade Design Method based on Non-Intrusive Polynomial Chaos Considering Profile Error 被引量:4

A Robust Blade Design Method based on Non-Intrusive Polynomial Chaos Considering Profile Error
原文传递
导出
摘要 To weaken the influence of profile error on compressor aerodynamic performance, especially on pressure ratio and efficiency, a robust design method considering profile error is built to improve the robustness of aerodynamic performance of the blade. The characteristics of profile error are random and small-scaled, which means that to evaluate the influence of profile error on blade aerodynamic performance is a time-intensive and high-precision work. For this reason, non-intrusive polynomial chaos(NIPC) and Kriging surrogate model are introduced in this robust design method to improve the efficiency of uncertainty quantification(UQ) and ensure the evaluate accuracy. The profile error satisfies the Gaussian distribution, and NIPC is carried out to do uncertainty quantification since it has advantages in prediction accuracy and efficiency to get statistical behavior of random profile error. In the integrand points of NIPC, several surrogate models are established based on Latin hypercube sampling(LHS)+ Kriging, which further reduces the costs of optimization design by replacing calling computational fluid dynamic(CFD) repeatedly. The results show that this robust design method can significantly improve the performance robustness in shorter time(40 times faster) without losing accuracy, which is meaningful in engineering application to reduce manufacturing cost in the premise of ensuring the aerodynamic performance. Mechanism analysis of the robustness improvement samples carried out in current work can help find out the key parameter dominating the robustness under the disturbance of profile error, which is meaningful to further improvement of compressor robustness. To weaken the influence of profile error on compressor aerodynamic performance, especially on pressure ratio and efficiency, a robust design method considering profile error is built to improve the robustness of aerodynamic performance of the blade. The characteristics of profile error are random and small-scaled, which means that to evaluate the influence of profile error on blade aerodynamic performance is a time-intensive and high-precision work. For this reason, non-intrusive polynomial chaos(NIPC) and Kriging surrogate model are introduced in this robust design method to improve the efficiency of uncertainty quantification(UQ) and ensure the evaluate accuracy. The profile error satisfies the Gaussian distribution, and NIPC is carried out to do uncertainty quantification since it has advantages in prediction accuracy and efficiency to get statistical behavior of random profile error. In the integrand points of NIPC, several surrogate models are established based on Latin hypercube sampling(LHS) + Kriging, which further reduces the costs of optimization design by replacing calling computational fluid dynamic(CFD) repeatedly. The results show that this robust design method can significantly improve the performance robustness in shorter time(40 times faster) without losing accuracy, which is meaningful in engineering application to reduce manufacturing cost in the premise of ensuring the aerodynamic performance. Mechanism analysis of the robustness improvement samples carried out in current work can help find out the key parameter dominating the robustness under the disturbance of profile error, which is meaningful to further improvement of compressor robustness.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第5期875-885,共11页 热科学学报(英文版)
基金 support of the National Natural Science Foundation of China (NSFC) under the Grant No. 51790512 the Overseas Expertise Introduction Project for Discipline Innovation (111 Project) under Grant No. B17037 Industry-University-Research Cooperation Project of Aero Engine Corporation of China (AECC) under Grant No. HFZL2018CXY011-1 and MIIT
关键词 ROBUST design non-intrusive POLYNOMIAL CHAOS aerodynamic performance RANDOM PROFILE ERROR uncertainty quantification robust design non-intrusive polynomial chaos aerodynamic performance random profile error uncertainty quantification
  • 相关文献

参考文献8

二级参考文献101

共引文献157

同被引文献30

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部