期刊文献+

基于BLSTM和注意力机制的电商评论情感分类模型 被引量:3

Sentiment Classification Model Based on BLSTM and Attentional Mechanism
下载PDF
导出
摘要 随着互联网的飞速发展,电商评论中所包含的情感信息对商家愈发重要。面对海量数据,传统的基于情感词典和机器学习算法来进行情感分类的方法已经不再适用。为了有效学习文本特征,减少文本中冗余噪声对于情感分类的影响,提出一种基于双向长短时记忆网络(BLSTM)和注意力机制的情感分类模型。实验表明,相较于传统的机器学习方法和普通的深度学习方法,论文模型在准确率、召回率和F1值指标上均有明显提高。 With the rapid development of the Internet,the sentiments contained in ecommerce reviews is increasingly impor. tant to businesses. In the face of massive data,traditional methods of sentiment classification based on sentiment dictionaries and machine learning methods are no longer suitable for use. In order to effectively learn the text features and reduce the impact of redun. dant noise during the sentiment classification,a sentiment classification model based on bi-directional short and long-term memory network(BLSTM)and attentional mechanism is proposed. The experiment results show that compared with the traditional machine learning methods and ordinary deep learning methods,the model in the precison,recall rate and F1 score have significantly im. proved.
作者 潘晓英 赵普 赵倩 PAN Xiaoying;ZHAO Pu;ZHAO Qian(College of Computer,Xi'an University of Post and Telecommunications,Xi'an 710121)
出处 《计算机与数字工程》 2019年第9期2227-2232,共6页 Computer & Digital Engineering
基金 国家自然科学基金(编号:61105064) 陕西省教育厅专项科研计划项目(编号:14JK1667) 西安邮电大学创新基金(编号:103-60208007)资助
关键词 电商评论 情感分类 双向长短时记忆网络 注意力机制 ecommerce reviews sentiment classification bi-directional short and long-term memory network(blstm) at. tentional mechanism
  • 相关文献

参考文献5

二级参考文献82

  • 1徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:122
  • 2David D Lewis.Naive Bayes at forty:The independence assumption in information retrieval[C].The 10th European Conf on Machine Learning,Chemnitz,Germany,1998
  • 3T M Cover,J A Thomas.Elements of Information Theory[M].New York:Wiley,1991
  • 4C Zhai,J Lafferty.A study of smoothing methods for language models applied to ad hoc information retrieval[C].SIGIR'2001,New Orleans,USA,2001
  • 5R Kneser,H Ney.Improved backing-off for m-gram language modeling[C].The IEEE Int'l Conf on Acoustics,Speech and Signal Processing,Detroit,MI,USA,1995
  • 6S F Chen,J T Goodman.An empirical study of smoothing techniques for language modeling[R].Harvard University,Tech Rep:TR-10-98,1998
  • 7Peter D Turney.Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[C].ACL'02,Philadelphia,Pennsylvania,USA,2002
  • 8Thorsten Joachims.Making large-scale SVM learning practical[G].In:Bernhard Scholkopf,Alexander Smola,eds.Advances in Kernel Methods-Support Vector Learning.Cambridge,MA:The MIT Press,1999.44-56
  • 9Bo Pang,Lillian Lee,Shivakumar Vaithyanathan.Thumbs up? Sentiment classification using machine learning techniques[C].EMNLP'02,Philadelphia,USA,2002
  • 10Michael Gamon.Sentiment classification on customer feedback data:Noisy data,large feature vectors,and the role of linguistic analysis[C].The 20th Int'l Conf on Computational Linguistics,Geneva,Switzerland,2004

共引文献210

同被引文献7

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部