期刊文献+

基于HMM的羽球动作实时识别 被引量:3

Real Time Recognition of Badminton Action Based on Hidden
下载PDF
导出
摘要 机器学习与人工智能的快速发展,在人体动作分析与识别领域发挥着日益显著的作用。论文采用粘贴在羽毛球拍柄的单个加速度传感器进行羽球动作的数据采集,使用滑动窗口进行击球信号提取,提出了动作分帧结合K-means等无监督式学习算法进行聚类分析和矢量量化。通过建立隐马尔科夫模型(HMM),改进训练算法对羽球动作进行高效识别。实验表明,论文所设计的系统对8种常见的击球动作进行实时识别,识别率可达94%。 Machine learning and artificial intelligence have made rapid progress recently. They also play a significant role in the field of human motion analysis and recognition. In this paper,a single acceleration sensor is attached to the end of a badminton racket handle to collect its movement data. A sliding window technique is used to extract each hitting action,which is further divid. ed into several sub-action. Combining unsupervised learning algorithm such as K-means for the clustering analysis and vector quan. tization with a hidden Markov model(HMM),the improved training algorithm is able to recognize badminton actions efficiently. It shows a real time recognition rate of 94% for 8 common actions.
作者 雷玉超 业茜 吴怡菲 吴栩博 李志扬 LEI Yuchao;YE Xi;WU Yifei;WU Xubo;LI Zhiyang(Central China Normal University,Wuhan 430079)
机构地区 华中师范大学
出处 《计算机与数字工程》 2019年第9期2339-2343,共5页 Computer & Digital Engineering
关键词 机器学习 隐马尔科夫模型(HMM) 羽球动作识别 machine learning Hidden Markov Model(HMM) badminton action recognition
  • 相关文献

参考文献3

二级参考文献38

  • 1Ermes M, Parkka J, Mantyjarvi J,et al. Detection of daily activi-ties and sports with wearable sensors in controlled and uncon-trolled conditions [ J ]. IEEE Transactions on Information Tech-nology in Biomedicine ,2008 ,12 (1 ) :20 —26.
  • 2Min Jun Ki,Choe Bongwhan,Cho Sung Bae. A selective templatematching algorithm for short and intuitive gesture UI foraccelerometer- builtin mobile phones [ C] // IEEE the SecondWorld Congress on Nature and Biologically Inspired Computing,Fukuoka,2010:660 —665.
  • 3Ermes Miikka, Mantyjarvi Jani, Parkka Juha. Detection of dailyactivities and sports with wearable sensors in controlled and un-controlled conditions [ J ]. IEEE Transactions on InformationTechnology in Biomedicine ,2008 ,12 (1) :20 —26.
  • 4Banko M, Brill E. Scaling to very large corpora for natural language disambiguation. Proceedings of the 39th Annual Meeting on Association for Computational Linguistics (ACL), Toulouse, France, 2001:26-33.
  • 5Brants T, Popat C A, Xu P, et al. Large language models in machine translation. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Language Learning. Prague. Czech Republic, 2007:858-867.
  • 6Wang Y, Zhao X M, Sun Z L, et al. Peacock: learning long-tail topic features for industrial applications. ACM Transactions on Intelligent Systems and Technology, 2014, 9(4).
  • 7CCF Task Force on Big Data. Forecast for the development trend of big data in 2015. Communications of the China Computer Federation (CCCF), 2015, 11(1): 48-52.
  • 8Gonzalez J E. Emerging systems for large-scale machine learning. Proceedings of Tutorial on International Conference for Machine Learning(ICML) 2014, Beijing, China, 2014.
  • 9CCF Task Force on Big Data. White paper of China's big data technology and industrial development in 2014. Proceedings of Big Data Conference China, Beijing, China, 2014.
  • 10中国计算机学会大数据专家委员会.2015年中国大数据发展趋势预测.中国计算机学会通讯,2015,11(1):48-52.

共引文献78

同被引文献19

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部