期刊文献+

基于伪谱法的平台靠泊轨迹规划 被引量:1

Platform Berthing Trajectory Planning Based on Pseudospectral Method
下载PDF
导出
摘要 以深水半潜式支持平台为研究对象,为提高靠泊效率对支持平台的航行轨迹进行优化。通过对平台航行过程中的相关分析,建立了平台的运动的模型,环境受力模型。并结合实际问题对相关参数进行约束和确定目标函数。运用伪谱法将最优控制问题转换成非线性规划问题去求解。仿真结果表明,伪谱法对求解支持平台的航迹优化有着良好的效果,能够满足相关的要求,具有一定的应用价值。 Taking deep-water semi submersible support platform as the research object,in order to improve the berthing efficiency,the navigation trajectory of the support platform is optimized.Through the relevant analysis of the platform navigation process,the model of the platform's motion and the environmental force model are established.And combined with the actual problem the relevant parameters are constrained and the objective function is determined.The pseudospectral method is used to transform the optimal control problem into a nonlinear programming problem.The simulation results show that the pseudospectral method has a good effect on the track optimization of the solution platform,which can meet the relevant requirements and has certain application value.
作者 王海圆 李建祯 苏贞 WANG Haiyuan;LI Jianzhen;SU Zhen(Jiangsu University of Science and Technology,Zhenjiang 212003)
机构地区 江苏科技大学
出处 《舰船电子工程》 2019年第9期56-60,112,共6页 Ship Electronic Engineering
基金 工信部深水半潜式支持平台研发专项(编号:工信部联装函【2016】546号)资助
关键词 支持平台 伪谱法 路径规划 最优控制 deep water support platform pseudospectral method path planning optimal control
  • 相关文献

参考文献5

二级参考文献91

  • 1雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 2LEITMAN G. The calculus of variations and optimal control[M]. New York: Springer, 1981 : 11 - 15.
  • 3HULL D G. Optimal control theory for applications [M]. New York: Springer, 2003:22-29.
  • 4ATHANS M A, FALB introduction to the theory York: Dover Publications, P L. Optimal control and its applications[M] 2006:132-139 : an New.
  • 5NOCEDAL J, WRIGHT S. Numerical optimization [M]. New York: Springer, 2006:197-323.
  • 6BIEGLER L T, GHATTAS O, HEIN M, et al. Large- scale PDE constrained optimization[R]. Pittsburgh: Carnegie Mellon University, 2003.
  • 7MIELE A. Recent advances in gradient algorithms for optimal control problems[J]. Journal of Optimization Theory and Applications, 1975, 17:361-430.
  • 8STRYK O V, BULIRSCH R. Direct and indirect methods for trajectory optimization[J]. Annals of Operations Research, 1992,37:357-373.
  • 9HULL D G. Conversion of optimal control problems into parameter optimization problems[J]. Journal of Guidance, Control and Dynamics, 1997,20(1):57-60.
  • 10BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998,21 (2): 193-207.

共引文献31

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部