期刊文献+

非限定条件下无约束的多姿态人脸关键特征自动识别算法 被引量:1

Automatic Recognition Algorithm for Unconstrained Multi-pose Face Key Features under Unqualified Conditions
下载PDF
导出
摘要 多姿态人脸关键特征的自动识别,对处理人脸数据库中的图像具有重要意义。为了保证人脸关键特征被准确识别,需要对人脸关键特征进行提取。传统算法对多姿态人脸关键特征进行自动识别时有效性差、识别率低、效率低。为此,文中提出了一种基于向量机的多姿态人脸关键特征自动识别算法,利用相机的焦距将人脸关键特征图像的三维坐标表示出来,计算出多姿态人脸关键特征的三维信息。利用滤波器处理多姿态人脸的关键特征并对其进行提取,最后根据向量机的权值,对人脸关键特征的目标函数和特征中的噪声进行分析,计算人脸自动识别的条件概率和迭代次数,实现非限定条件下无约束多姿态人脸关键特征的自动识别。实验结果表明,所提算法能够对多姿态人脸关键特征进行自动识别,并且具有较高的识别率。 Automatic recognition of multi-pose faces key features is of great significance to the processing of images in face database.In order to ensure that face key features are accurately recognized,it is necessary to extract key features of the face.When the traditional algorithm is used to automatically recognize multi-pose face key features,the obtained face images are of poor efficiency,low recognition rate and low efficiency.This paper presented an automatic multi-pose face feature recognition algorithm based on vector machine.The 3D coordinate of the face key feature image is represented by the focal length of the camera, and the 3D information of the multi-pose face key feature is calculated. Filter is used to deal with multi-pose face key features.Finally, according to the weight of the vector machine,this paper analyzed the target function and the noise of face key features,calculated the condition probability and the iteration number of the face automatic recognition,and realized the automatic recognition of the key features of unconstrained multi-pose face under the unqualified condition.Experiment results show that the proposed algorithm can be used to automatically identifiy the multi-pose face key features,and has high recognition rate and recognition efficiency.
作者 赵志伟 倪桂强 ZHAO Zhi-wei;NI Gui-qiang(Institute of Command and Control Engineering,Army Engineering University,Nanjing 210007,China)
出处 《计算机科学》 CSCD 北大核心 2019年第9期250-253,共4页 Computer Science
基金 863项目(2012AA01A509) 中国高校科技期刊研究会基金(GBJXB1110)资助
关键词 非限定条件 无约束多姿态 人脸关键特征 自动识别 Unqualified conditions Unconstrained multi-pose Face key feature Automatic identification
  • 相关文献

参考文献14

二级参考文献111

  • 1陈粟,倪林.一种特征脸分析和小波变换相结合的人脸识别方法[J].计算机应用,2004,24(10):75-77. 被引量:11
  • 2周国民,陈勇,李国军.人脸识别中应用小波变换的两个关键问题[J].浙江大学学报(理学版),2005,32(1):34-38. 被引量:27
  • 3杨国亮,任金霞,刘细平.基于小波分析和KPCA的人脸识别[J].自动化技术与应用,2003,22(9):29-32. 被引量:3
  • 4孙广家.计算机图形学(第三版)[M].北京:清华大学出版社,1998..
  • 5Turk M A,Pentland A P.Face recognition using eigenfaces[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1991:586-591.
  • 6Yang J,Zhang D,Frangi A F,et al.Two-dimensional PCA:a new approach to appearance-based face representation and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
  • 7Yang Jian,Yang Jingyu.From image vector to matrix:a straightforward image projection technique—IMPCA vs.PCA[J].Pattern Recognition,2002,35(9):1997-1999.
  • 8Wang L,Wang X,Zhang X,et al.The equivalence of twodimensional PCA to line-based PCA[J].Pattern Recognition Letters,2005,26(1):57-60.
  • 9Zhang D,Zhou Z H.(2D)2PCA:two-directional twodimensional PCA for efficient face representation and recognition[J].Neurocomputing,2005,69(1):224-231.
  • 10Cheng Y,Wang C,Zhao C.Illumination and posture invariant face recognition using Radon and nonsubsampled contourlet transform[C]//Chinese Conference on Pattern Recognition,2009:1-5.

共引文献101

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部