期刊文献+

强化学习下能耗优化的虚拟机放置策略 被引量:5

Virtual Machine Placement Strategy with Energy Consumption Optimization under Reinforcement Learning
下载PDF
导出
摘要 云数据中心的高速发展带来了非常强大的计算能力,但是伴随产生的能耗问题也日益严重。为了降低云数据中心内物理服务器的能耗开销,首先利用强化学习对虚拟机放置问题进行建模,随后结合实际问题从状态聚合和时间信度两个方面对Q-Learning(λ)算法进行优化,最后通过云仿真平台CloudSim和实际数据集对虚拟机放置问题进行实验。实验结果表明,与Q-Learning算法、Greedy算法和PSO算法相比,优化后的Q-Learning(λ)算法更有效地降低了物理服务器的能耗开销,同时针对不同数量的虚拟机放置请求也能够保证更好的结果,具有较强的实用价值。 Although the rapid development of cloud data centers has brought very powerful computing power,the energy consumption problem has become increasingly serious.In order to reduce the energy consumption of physical servers in cloud data centers,firstly the virtual machine placement problem is modeled by reinforcement learning.Then,the Q-Learning(λ) algorithm is optimized from two aspects:state aggregation and time reliability.Finally,the virtual machine placement problem is simulated through cloud simulation platform CloudSim and actual data.The simulation results show that the optimized Q-Learning(λ) algorithm can effectively reduce the energy consumption of the cloud data center compared with the Greedy algorithm,PSO algorithm and Q-Learning algorithm,and can ensure better results for different numbers of virtual machine placement requests.The proposed algorithm has strong practical value.
作者 卢海峰 顾春华 罗飞 丁炜超 袁野 任强 LU Hai-feng;GU Chun-hua;LUO Fei;DING Wei-chao;YUAN Ye;REN Qiang(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《计算机科学》 CSCD 北大核心 2019年第9期291-297,共7页 Computer Science
基金 国家自然科学基金面上项目(61472139) 华东理工大学2017年教育教学规律与方法研究项目(ZH1726107)资助
关键词 云计算 虚拟机放置 强化学习 能耗优化 Q-Learning(λ)算法 Cloud computing Virtual machine placement Reinforcement learning Energy consumption optimization Q-Learning(λ) algorithm
  • 相关文献

参考文献1

二级参考文献1

共引文献8

同被引文献23

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部