摘要
Aiming at disclosing the quantitative e ects of Coulomb forces on the ltration e ciency of aerosol particles, a three- dimensional random ber model was established to describe the microstructure of brous lters. Then, computational mod- els including the ow model, particle model, and electric eld model were constructed to estimate the ltration e ciency using the Fluent custom user-de ned function program, neglecting the non-uniformity of the ber potential and the particle charge distribution. The simulation results using the established models agreed with the data in the literature. In particular, the electric eld force was found to be one of the important factors required to improve the ltration e ciency estimation accuracy for the ultra ne particles. Moreover, the variation tendencies of the ltration e ciency and the pressure drop of brous lters were studied based on the in uence factors of the ber potential, particle charge-to-mass ratio, solid volume fraction, ber diameter, and face velocity. The established models and estimated results will provide important guidance on the design of high-e ciency particulate air lters for aerosol particles.
Aiming at disclosing the quantitative effects of Coulomb forces on the filtration efficiency of aerosol particles, a three-dimensional random fiber model was established to describe the microstructure of fibrous filters. Then, computational models including the flow model, particle model, and electric field model were constructed to estimate the filtration efficiency using the Fluent custom user-defined function program, neglecting the non-uniformity of the fiber potential and the particle charge distribution. The simulation results using the established models agreed with the data in the literature. In particular, the electric field force was found to be one of the important factors required to improve the filtration efficiency estimation accuracy for the ultrafine particles. Moreover, the variation tendencies of the filtration efficiency and the pressure drop of fibrous filters were studied based on the influence factors of the fiber potential, particle charge-to-mass ratio, solid volume fraction, fiber diameter, and face velocity. The established models and estimated results will provide important guidance on the design of high-efficiency particulate air filters for aerosol particles.
基金
supported by the National Key Research and Development Program (No. 2016YFC1201503)
Natural Science Foundation of China (No. 21576206)
the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)