摘要
互联网信息技术的发展使得企业可以为众多在线用户实现信息的实时交互。如何挖掘出海量产品数据中隐藏的用户行为、实现个性化推荐服务是企业面临的一个重要问题。本项目使用PHP、Python、MariaDB等技术对原始数据进行了清理、集成、标记等预处理,然后以用户消费信息中的产品信息为研究对象,运用传统的协同过滤算法,建立用户与产品信息的0-1矩阵,得到产品的偏好推荐。通过测试推荐结果发现,模型效果欠佳。为了提高推荐精度,提出了时间权重与兴趣相似度融合的协同过滤模型。时间权重考虑了用户偏好变化与时间的依赖关系,兴趣相似度用于改进模型的预测精度。在包含4万余条电视产品收视数据的数据集上实现了该方法,并将其与传统协同过滤模型进行了对比,发现改进后的协同过滤模型的精度得到了显著改善。最后,基于时间权重与兴趣相似度融合的协同过滤模型的推荐结果,给出了增加用户所使用的机顶盒套餐信息的个性化营销推荐方案。
The development of Internet information technology has enabled enterprises to realize real-time information interaction for many online users. How to dig out hidden user behaviors in the massive products data and implement personalized recommendation services is an important issue for operators. Firstly,we use MariaDB,PHP and Python to clean,integrate,label the raw datasets. Secondly,taking the products information in the user’s consumption information as the research object,the 0-1 matrix of user and TV product information is established based on the traditional collaborative filtering algorithm,and the products preference recommendation is obtained. We found that the accuracy of the traditional collaborative filtering algorithm is not desirable by observing the test recommendation results. To improve the recommendation accuracy,an advanced collaborative filtering model integrated with time weight and interest similarity is proposed. The time weight takes into account the dependence of the user’s viewing preference changing with time,and the similarity of interest is used to improve the prediction accuracy of the proposed model. The proposed model is implemented on a data set containing more than 40 000 TV products. Finally,we compared the proposed model against the traditional collaborative filtering model. The experiment suggests that the accuracy of the proposed collaborative filtering model is significantly improved. In addition,based on recommendation results of integrating time weights and interest similarity,the personalized marketing recommendation scheme,with the package information of the set-top boxes added,is put forward to the decision-makers.
作者
孔元元
白智远
张飒
吕品
KONG Yuan-yuan;BAI Zhi-yuan;ZHANG Sa;LYU Pin(School of Electronic Information,Shanghai Dianji University,Shanghai 201306,China)
出处
《计算机技术与发展》
2019年第9期195-199,共5页
Computer Technology and Development
基金
2018年上海市大学生科创项目(A1-0224-18-012-071)
上海市教育科学研究项目(C17014/17AR04)
关键词
电视产品
协同过滤算法
时间权重
兴趣相似度
个性化推荐
television products
collaborative filtering algorithm
time weight
interest similarity
personalized recommendation