期刊文献+

面向群组推荐的个性化隐私保护方法 被引量:3

Personalized privacy protection method for group recommendation
下载PDF
导出
摘要 为解决现有的隐私保护方法不能很好地满足群组推荐中用户的个性化隐私需求的问题,提出了一种面向群组推荐的基于可信客户端的个性化隐私保护框架及基于此框架的群组敏感偏好保护方法。所提方法在可信客户端收集群组内用户的历史数据以及隐私偏好需求,利用用户敏感主题相似性发现组内相似用户,通过对前k个用户进行随机的协同扰动,实现群组内用户的个性化隐私保护。仿真对比实验表明,所提的个性化隐私保护方法能够满足不同用户的隐私需求,具有更好的性能。 To address the problem that most of the existing privacy protection methods can not satisfy the user’s personalized requirements very well in group recommendation, a user personalized privacy protection framework based on trusted client for group recommendation(UPPPF-TC-GR) followed with a group sensitive preference protection method(GSPPM) was proposed. In GSPPM, user’s historical data and privacy preference demands were collected in the trusted client, and similar users were selected in the group based on sensitive topic similarity between users. Privacy protection for users who had privacy preferences in the group was realized by randomization of cooperative disturbance to top k similar users. Simulation experiments show that the proposed GSPPM can not only satisfy privacy protection requirements for each user but also achieve better performance.
作者 王海艳 陆金祥 WANG Haiyan;LU Jinxiang(School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
出处 《通信学报》 EI CSCD 北大核心 2019年第9期106-115,共10页 Journal on Communications
基金 国家自然科学基金资助项目(No.61772285)~~
关键词 群组推荐 个性化隐私保护 随机化扰动 K-匿名 group recommendation personalized privacy protection randomized perturbation k-anonymous
  • 相关文献

参考文献11

二级参考文献52

  • 1ZHENG Y, LI M, LOU W, et al. Location based handshake and privateproximity test with location tags[J]. IEEE Transactions on Dependableand Secure Computing, 2015:1.
  • 2SUN J, ZHANG R, ZHANG Y. Privacy-preserving spatiotemporalmatching[C]//32th IEEE International Conference on ComputerCommunications. c2013: 800-808.
  • 3LU R, LIN X,SHEN X. SPOC: a secure and privacy-preserving op-portunistic computing framework for mobile-healthcare emergency[J].IEEE Transactions on Parallel and Distributed Systems, 2013, 24(3):614-623.
  • 4AGRAWAL R, EVF1MIEVSKI A, SRIKANT R. Information sharingacross private databases[C]//30th ACM SIGMOD International Con-ference on Management of Data. c2003: 86-97.
  • 5VAIDYA J, CLIFTON C. Secure set intersection cardinality withapplication to association rule mining[J]. Journal of Computer Security,2005, 1(13): 593-622.
  • 6NIU B, ZHU X, ZHANG T, et al. P-match: priority-aware frienddiscovery for proximity-based mobile social networks[C]//10th IEEEInternational Conference on Mobile Ad-Hoc and Sensor Systems.c2013: 351-355.
  • 7LI R, WU C. An unconditionally secure protocol for multi-party setintersection[M]. 5th Springer Applied Cryptography and Network Se-curity, c2007: 226-236.
  • 8KERSCHBAUM F. Outsourced private set intersection using homo-morphicencryption[C]//7th ACM Symposium on Information, Com-puter and Communications Security. c2012: 85-86.
  • 9LI M, YU S, CAO N,et al. Privacy-preserving distributed profilematching in proximity-based mobile social networks[J]. IEEE Trans-actions on Wireless Communications, 2013,12(5): 2024-2033.
  • 10ZHANG R, ZHANG J, ZHANG Y, et al. Privacy-preserving profilematching for proximity-based mobile social networking[J]. IEEE Jour-nal on Selected Areas in Communications, 2013,31(9): 656-668.

共引文献407

同被引文献33

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部