期刊文献+

联合成对排序的物品推荐模型 被引量:1

Co-pairwise ranking model for item recommendation
下载PDF
导出
摘要 现有的推荐模型大多仅从用户角度进行建模,忽略了物品的功能关系对用户购买决策的影响。从用户和物品这2个角度,同时考虑用户–物品之间的交互关系和物品–物品之间的功能关系,提出了联合成对排序的推荐模型。考虑正样本的排名位置和负采样策略直接影响模型收敛速度,构建一种排序感知的学习算法,用于求解所提模型的参数。实验结果表明,与当前主流推荐算法相比,该算法在多个评价指标上具有明显的性能优势。 Most of existing recommendation models constructed pairwise samples only from a user’s perspective. Nevertheless, they overlooked the functional relationships among items--A key factor that could significantly influence user purchase decision-making process. To this end, a co-pairwise ranking model was proposed, which modeled a user’s preference for a given item as the combination of user-item interactions and item-item complementarity relationships. Considering that the rank position of positive sample and the negative sampler had a direct impact on the rate of convergence, a rank-aware learning algorithm was devised for optimizing the proposed model. Extensive experiments on four real-word datasets are conducted to evaluate of the proposed model. The experimental results demonstrate that the devised algorithm significantly outperforms a series of state-of-the-art recommendation algorithms in terms of multiple evaluation metrics.
作者 吴宾 陈允 孙中川 叶阳东 WU Bin;CHEN Yun;SUN Zhongchuan;YE Yangdong(School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China)
出处 《通信学报》 EI CSCD 北大核心 2019年第9期193-206,共14页 Journal on Communications
基金 国家重点研发计划基金资助项目(No.2018YFB1201403) 国家自然科学基金资助项目(No.61772475,No.61502434)~~
关键词 物品推荐 成对排序 协同过滤 隐式反馈 矩阵分解 item recommendation pairwise ranking collaborative filtering implicit feedback matrix factorization
  • 相关文献

参考文献5

二级参考文献38

  • 1王大玲,于戈,鲍玉斌.一种具有最大推荐非空率的关联规则挖掘方法[J].软件学报,2004,15(8):1182-1188. 被引量:11
  • 2Liu JG, Zhou T, Wang BH. Research progress of personalized recommendation system. Progress in Natural Science, 2009,19(1): 1-15 (in Chinese with English abstract).
  • 3Ma H, Yang HX, Lyu MR, King I. SoRec: Social recommendation using probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2008. 978-991. [doi: 10.1145/1458082.1458205].
  • 4Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2009. 203-210. [doi: 10.1145/1571941.1571978].
  • 5Guo L, Ma J, Chen ZM, Jiang HR. Learning to recommend with social relation ensemble. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 2599-2602. [doi: 10.1145/2396761.2398701].
  • 6Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 397-405. [doi: 10.1145/1557019. 1557067].
  • 7Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736].
  • 8Zhou TC, Ma H, King I, Lyu MR. UserRec: A user recommendation framework in social tagging systems. In: Proc. of the 24th AAAI Conf. on Artificial Intelligence. AAAI Press, 2010. 1486-1491.
  • 9Wu L, Chen EH, Liu Q, Xu LL, Bao TF, Zhang L. Leveraging tagging for neighborhood-aware probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 1854-1858. [doi: 10.1145/ 2396761.2398531].
  • 10Liu Q, Chen EH, Xiong H, Ding CHQ, Chen J. Enhancing collaborative filtering by user interests expansion via personalized ranking. IEEE Trans, on Systems, Man and Cybernetics—B, 2012,42(1):218-233. [doi: 10.1109/TSMCB.2011.2163711].

共引文献231

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部