期刊文献+

倒向随机系统的线性二次混合最优控制 被引量:1

Mixed Optimal Control of Linear Backward Stochastic Systems with Quadratic Costs
下载PDF
导出
摘要 倒向随机系统的线性二次最优控制问题的状态系统是具有两个控制器的倒向随机微分方程:一个为确定的控制器,另一个为随机控制器.在适当的假设下,通过凸分析技术可以证明最优控制存在且唯一.利用Ito公式和对偶计算获得了最优控制的随机Hamiltion系统的对偶表示.随机Hamiltion系统是由状态方程、对耦方程和最优控制的对偶表示构成完全耦合的平均场类型的正倒向随机微分方程. The state system of linear mixed quadratic optimal control problem for backward stochastic systems is a backward stochastic differential equation with two controllers: one is a determined controller and the other is a stochastic controller. Under suitable assumptions, the existence and uniqueness of optimal control is proved by the convex analysis technology. The dual representation of stochastic Hamiltonian systems with optimal control is obtained by using Ito formula and dual computation. Here the stochastic Hamiltion system is a fully-coupled forward-backward stochastic differential equation of mean-field type, which is composed of state equation, dual equation and dual representation of optimal control.
作者 周林峰 金雪梅 李程伟 徐昊辰 蔡晨晨 孟庆欣 ZHOU Linfeng;JIN Xuemei;LI Chengwei;XU Haochen;CAI Chenchen;MENG Qingxin(School of Science, Huzhou University, Huzhou 313000, China)
出处 《湖州师范学院学报》 2019年第8期7-13,共7页 Journal of Huzhou University
基金 湖州师范学院大学生创新创业项目(2017-90) 浙江省自然科学基金杰出青年基金项目(LR15A010001)
关键词 混合最优控制 倒向随机系统 对偶方程 Gateaux导数 ITO公式 mixed optimal control backward stochastic system dual equation Gateaux derivative Ito formula
  • 相关文献

参考文献5

二级参考文献62

  • 1WUZhen.FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS, LINEAR QUADRATIC STOCHASTIC OPTIMAL CONTROL AND NONZERO SUM DIFFERENTIAL GAMES[J].Journal of Systems Science & Complexity,2005,18(2):179-192. 被引量:13
  • 2Y. Hu, and S. Peng, Solution of forward-backward stochastic differential equations, Proba. Theory and Related Fields, 1995, 103: 273-283.
  • 3S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 1999, 37: 825-843.
  • 4J. Yong, Finding adapted solution of forward backward stochastic differential equations-method of continuation, Proba Theory and Related Fields, 1997, 107: 537-572.
  • 5W. M. Wonham, On the separation theorem of stochastic control, SIAM J. Control Optim., 1968,6: 312-326.
  • 6J. M. Bismut, Controle des systemes lineaires quadratiques: applications de l'integrale stochastique, Lecture Notes in Mathematics, vol.649, Seminaire de Probabilites XII, Proceedings, Strasbourg, 1976-1977, Edite par C. Dellacherie, P. A. Meyer et M. Weil, Springer-Verlag, 1978, 180-264.
  • 7S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs, SIAM J. Control Optim. 1998, 36: 1685-1702.
  • 8S. Peng, Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions,Stochastic Processes and Their Applications, 2000, 88: 259-290.
  • 9A. Friedman, Differential Games, Wiley-Interscience, New York, 1971.
  • 10A. Bensoussan, Point de Nash dans de cas de fonctionnelles quadratiques et jeux differentiels a Npersonnes, SIAM J. Control, 1974, 12(3).

共引文献14

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部