期刊文献+

基于气-液-固模式的Ⅲ-Ⅴ族一维半导体纳米线的生长研究概述

A Review on the Growth of Ⅲ-Ⅴ One-dimensional Semiconductor Nanowires Based on Vapor-Liquid-Solid Mode
下载PDF
导出
摘要 Ⅲ-Ⅴ族一维半导体纳米线由于具有独特的性能、丰富的科学内涵而被广泛应用于微机电、光电子、光伏电、传感等方面,并在未来纳米结构器件中占有重要的战略地位,近年来引起了人们极大的兴趣和关注。探索Ⅲ-Ⅴ族一维半导体纳米线新的结构调控手段,研究具有重要应用价值的Ⅲ-Ⅴ族一维半导体纳米线的可控生长方法和技术,从而获得可应用于器件和功能实现的高质量Ⅲ-Ⅴ族一维半导体纳米线是目前各研究组的主要目标。基于气-液-固模式的纳米线生长方法具有对纳米线形貌及晶体质量可控的优点,成为当前制备高质量Ⅲ-Ⅴ族一维半导体纳米线的主要生长技术。催化辅助生长是一种有金属催化剂参与的纳米线生长方式,它可以有效降低反应物裂解能量、提高材料成核质量、控制材料生长方向、提高反应效率、稳定材料晶体结构。自催化生长是指在纳米线生长过程中不添加其他物质作为催化剂,而由反应物自身起催化作用的生长。由于自催化生长在反应过程中未引入其他物质,所以生成物纯度较高。Ⅲ-Ⅴ族异质结构半导体纳米线常具有两种半导体各自不能达到的优良光电特性,其又可划分为纵向异质结构和横向异质结构。Ⅲ-Ⅴ族一维半导体纳米线除了可以在与其自身材料相同的基底表面上生长之外,还可在与其材料不同的基底表面上生长,即在异质基底表面生长。异质基底生长在材料兼容、光电集成等方面具有十分广阔的应用前景。本文对基于气-液-固模式的Ⅲ-Ⅴ族一维半导体纳米线的生长进行了综述,并对近些年基于催化辅助和自催化的纵向异质结构、横向异质结构以及异质基底的成长研究现状进行了总结,为推动Ⅲ-Ⅴ族一维半导体纳米线制备技术的发展提供了参考依据。 Because of their unique properties and abundant scientific connotations,Ⅲ-Ⅴone-dimensional semiconductor nanowires are widely used in micro-electromechanical,optoelectronic,photovoltaic,sensing and other fields,and play an important strategic role in future nanostructured devices,which have attracted great interest and attention in recent years.Exploring new structural control methods,researching controllable growth methods and technologies ofⅢ-Ⅴone-dimensional semiconductor nanowires with important application value,so as to obtain high-qualityⅢ-Ⅴone-dimensional semiconductor nanowires which can be applied to devices and functional realization are the main goals of current research groups.The growth method of nanowires based on vapor-liquid-solid(VLS)mode has the advantage of controllability of nanowires’morphology and crystal quality,and has become the main growth technology for high-qualityⅢ-Ⅴone-dimensional semiconductor nanowires.Catalyst assisted VLS growth is a kind of nanowire growth with metal catalysts.It can effectively reduce the energy of reactant pyrolysis,improve the quality of nanowire nucleation,control the direction of nanowire growth,improve the reaction efficiency and ensure the crystal structure of nanowires.Self-catalyzed VLS growth refers to the growth of nanowires catalyzed by the reactants themselves without adding other materials as catalysts.Since self-catalyzed VLS growth does not introduce other materials into the reaction process,the purity of the nanowires is high.Ⅲ-Ⅴheterostructure semiconductor nanowires often have excellent optoelectronic properties that neither of the two semiconductors can achieve.They can also be divided into axial heterostructures and radial heterostructures.Ⅲ-Ⅴone-dimensional semiconductor nanowires can grow not only on the same substrate surface as their own materials,but also on different substrate surfaces,i.e.,on heterosubstrates.Heterosubstrate growth has broad application prospects in material compatibility and photoelectric integration.In this paper,the growth ofⅢ-Ⅴone-dimensional semiconductor nanowires based on vapor-liquid-solid model is reviewed.The recent years’research progress on the growth of axial heterostructures,radial heterostructures and heterosubstrates based on catalyst assisted and self-catalyzed methods are summarized to provide references for the development ofⅢ-Ⅴsemiconductor nanowire fabrication technology.
作者 刘妍 彭艳 郭经纬 徐朝鹏 喇东升 LIU Yan;PENG Yan;GUO Jingwei;XU Zhaopeng;LA Dongsheng(National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,Yanshan University,Qinhuangdao 066004;School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004;Hebei Key Laboratory of Information Transmission and Signal Processing,Yanshan University,Qinhuangdao 066004;School of Computer and Communication Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004;State Key Laboratory of Millimeter Waves,Southeast University,Nanjing 210096)
出处 《材料导报》 EI CAS CSCD 北大核心 2019年第23期3930-3938,共9页 Materials Reports
基金 国家自然科学基金(51375424 61501100) 河北省自然科学基金(F2019203012) 东南大学毫米波国家重点实验室开放课题(K201705)~~
关键词 纳米线 半导体 Ⅲ-Ⅴ族 气-液-固模式 nanowire semiconductor Ⅲ-Ⅴ vapor-liquid-solid mode
  • 相关文献

参考文献1

二级参考文献21

  • 1Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H, Lieber C M 2001 Science 294 1313.
  • 2Bryllert T, Wernersson L E, Lowgren T, Samuelson L 2006 Nanotechnol. 17 S227.
  • 3Li Y, Qian F, Xiang J, Lieber C M 2006 Mater. Today 9 18.
  • 4Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89.
  • 5Givargizov E [ 1975 J. Cryst. Growth 31 20.
  • 6Yan R X, Gargas D, Yang P D 2009 Nat. Photonics 3 569.
  • 7Joyce H J, Gao Q, Tan H H, Jagadish C, Kim Y, Fickenscher M A, Perera S, Hoang T B, Smith L M, Jackson 14 E, Yarrison- Rice J M, Zhang X, Zou J 2009 Nano Lett. 9 695.
  • 8Guo Y N Zou J, Paladugu M, Wang H, Gao Q, Tan H H, Jagadish C 2006 Appl. Phys. Lett. 89 231917.
  • 9Svensson C P T, Martensson T, Tragardh J, Larsson C. Rask M, Hessman D, Satnuelson L, Ohlsson J 2008 Nanotechnol. 19 305201.
  • 10Paladugu M, Zou J, Guo Y N, Auchterlonie G J. Joyce H J, Gao Q, Tan H H, Jagadish C, Kim Y 2007 Small 4 1873.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部