期刊文献+

关于n-秩轮图2-adic Orlik- Solomon代数的研究

On the 2-adic Orlik- Solomon algebra of n-rank wheel graphs
下载PDF
导出
摘要 研究了与n-秩轮图相伴的超平面构形的2-adic Orlik-Solomon代数,得到了2-adic Orlik-Solomon代数前4项的维数计算公式,并发现这类图构形不是二次的,这一结果部分回答了Falk提出的公开问题。最后,计算了这一类聚合物拓扑图2-adic Orlik-Solomon代数的第4项维数。 We have studied the 2-adic Orlik -Solomon algebra of a hyperplane arrangement associated with an nrank wheel graph,obtained the dimension formular of the first four terms of the 2-adic Orlik -Solomon algebra,and found that this arrangement is not quadratic.The results partially answer an open question raised by M.Falk.Finally, the calculation method is used in computing the fourth term of the 2-adic Orlik -Solomon algebra of graphs from the topological classification of polymers.
作者 陈文娟 孙贵艳 王子璇 姜广峰 CHEN WenJuan;SUN GuiYan;WANG ZiXuan;JIANG GuangFeng(Faculty of Science,Beijing University of Chemical Technology,Beijing 100029,China)
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第5期112-117,共6页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(11071010)
关键词 超平面构形 2-adicOrlik-Solomon代数 n-秩轮图 hyperplane arrangement 2-adic Orlik -Solomon algebra n-rank wheel graph
  • 相关文献

参考文献2

二级参考文献9

  • 1Orlik P, Terao H. Arrangements of Hyperplanes [ M ]. Berlin: Springer- Verlag, 1991.
  • 2Stanley R P. An Introduction to Hyperplane Arrangements[M]. Washington: Park City Mathematics Series, 2004.
  • 3Ardila F. Computing the Tutte polynomial of a hyperplane arrangement [ J ]. Pacific J Math, 2007, 230 (1) : 1 - 26.
  • 4Esehenbrenner C J, Falk M J. Orlik-Solomon algebras and Tutte polynomials [ J ]. J Alg Comb, 1999, 10 ( 2 ) : 189 - 199.
  • 5Dohmen K, Ponitz A, Tittmann P. A new two-variable generalization of the chromatic polynomial [ J ]. Discrete Math Theoretical Computer Sei, 2003, 6(1) : 69 - 90.
  • 6Edelman P H, Reiner V. Free hyperplane arrangements between An-1 and B.[J]. Math Z, 1994, 215:347- 365.
  • 7FALK M.Arrangements and cohomology[J].Ann Comb,1997,1(2):135-158.
  • 8FALK M.Combinatorial and algebraic structure in orliksolomon algebra[J].Europ J Combinatorics,2001,22(3):687-698.
  • 9FALK M.On the algebra associated with a geometric lattice[J].Adv Math,1990,80:152-163.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部