摘要
利用四次剩余与Pell方程的性质,导出了椭圆曲线y^2=px(x^2-2)[p是满足p≡1(mod 8)的奇质数]的正整数点的一个性质,证明了该椭圆曲线至多有4个正整数点的结论和至多有2个正整数点的充分条件。
By using the properties of quadratic residue and Pell equation, a property of positive integer points of elliptic curve y^2=px(x^2-2) was derived,Where p was an odd prime with p≡1(mod 8) The study has proved the conclusion that this elliptic curve has at most four positive integer points and sufficient conditions for at most two positive integer points.
作者
刘先蓓
李琴
LIU Xianbei;LI Qin(Institute of Statistics and Applied Mathematics,Anhui University of Finance and Economics,Bengbu 233030,China)
出处
《新乡学院学报》
2019年第9期11-12,共2页
Journal of Xinxiang University
基金
安徽省自然科学基金青年基金项目(1808085QA15)
安徽财经大学学校资助项目(ACKY1760)