期刊文献+

磁场环境下工作电压对线板式静电除尘器中同种颗粒除尘效率的影响 被引量:6

Influence of Working Voltage on Collection Efficiency for the Same Particle in a Wire-plate Electrostatic Precipitator under Magnetic Field Environment
下载PDF
导出
摘要 为了提升线板式静电除尘器(electrostatic precipitator,ESP)的除尘性能,利用Gambit软件构建了ESP网格模型,结合磁场能降低颗粒逃逸率的机理,将磁场引入到ESP中,模拟了同种颗粒的运动轨迹,计算并对比了不同工作电压下的除尘效率。结果表明:磁场的引入可有效提升线板式ESP对同种颗粒的捕集性能,且在低工作电压时更为显著;同一磁场环境下,工作电压对颗粒除尘效率的提升能力由强变弱;随着磁感应强度的增大,颗粒逃逸的数量不断减少,但磁场的相对贡献逐步减小。 In order to improve the dust removal performance of wire-plate electrostatic precipitator( ESP),a grid model was established by Gambit software. Combined with the mechanism that magnetic field can reduce the escape rate of particles,magnetic field was introduced into ESP to simulate the trajectory of the same kind of particles,and the collection efficiency under different working voltages was calculated and compared. The results show that the introduction of magnetic field effectively improves the trapping performance of the same particles in a wireplate ESP,especially at low operating voltage. Under the same magnetic field environment,the increasing ability of working voltage to the collection efficiency of particles changes from strong to weak. With the increase of magnetic induction intensity,the number of escaped particles reduces constantly,but the relative contribution of magnetic field decreases gradually.
作者 张建平 江泽馨 徐达成 ZHANG Jian-ping;JIANG Ze-xin;XU Da-cheng(College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
出处 《科学技术与工程》 北大核心 2019年第25期392-395,共4页 Science Technology and Engineering
基金 国家自然科学基金(11572187) 上海市科学技术委员会项目(18DZ1202105,18DZ1202302)资助
关键词 磁场环境 工作电压 同种颗粒 ESP 除尘效率 magnetic field environment working voltage the same particle electrostatic precipitator collection efficiency
  • 相关文献

参考文献5

二级参考文献45

  • 1孙巍,李真,吴松海,贾绍义.磁分离技术在污水处理中的应用[J].磁性材料及器件,2006,37(4):6-10. 被引量:37
  • 2郝文阁,王宝军.ESP电场中高质量浓度区粉尘气流的强制收集技术[J].东北大学学报(自然科学版),2007,28(3):422-425. 被引量:6
  • 3Su-Hee Shin S H, Kim Y H, Jung S K, et all. Combined performance of eleetroeoagulation and magnetic separation processes for treatment of dye wastewater[J]. Korean J Chem Eng, 2007, 21(4): 806-810.
  • 4Takeda S, Yu S, Furuyoshi T, et al. Applicability of superconducting magnet to high gradient magnetic separator[J]. IEEE Trans on Magnetics, 1987, MAG-23: 573-576.
  • 5Takeda S I, Furuyoshi T, Tari I, et al. Separatio of algae with magnetic iron oxide particles using superconducting high gradient magnetic fields [J]. Chem Soc Japan, 2000, 9: 661-663.
  • 6Takeda S, Shiomi H, Nakahira A. Analysis of aggregated particle size distribution in various nonaqueous media by ultrasonic attenuation spectroscopy[J]. Ceramic Transaction, 2001,112: 203-208.
  • 7Nishijima S, Izumi Y, Takeda S I, et ol. Recycling of abrasives from wasted slurry by superconducting magnetic separation [J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 1596-1599.
  • 8Kakihara Y, Fukunishi T, Takeda S, et al. Superconducting high gradient magnetic separation for purification of wastewater from paper factory[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1565-1567.
  • 9Jin J X, Liu H K, Zeng R, et ol. Developing a HTS magnet for high gradient magnetic separation techniques [J]. Physica C, 2000, 341-348: 2611-2612.
  • 10Ohara T, Kumakura H, Wada H. Magnetic separation using superconducting magnets[J]. Physica C, 2001, 357-360: 1272-1280.

共引文献40

同被引文献44

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部