期刊文献+

有混合数据输入的自适应模糊神经推理系统 被引量:5

An Adaptive Network-based Fuzzy Inference System with Mixed Data Inputs
下载PDF
导出
摘要 现有数据建模方法大多依赖于定量的数值信息,而对于数值与分类混合输入的数据建模问题往往根据分类变量组合建立多个子模型,当有多个分类变量输入时易出现子模型数据分布不均匀、训练耗时长等问题.针对上述问题,提出一种具有混合数据输入的自适应模糊神经推理系统模型,在自适应模糊推理系统的基础上,引入激励强度转移矩阵和结论影响矩阵,采用基于高氏距离的减法聚类辨识模型结构,通过混合学习算法训练模型参数,使数值与分类混合数据对模糊规则的前后件参数同时产生作用,共同影响模型输出.仿真实验分析了分类数据对模型规则后件的作用以及结构辨识算法对模糊规则数的影响,与其他几种混合数据建模方法对比表明本文所提出的模型具有较高的预测精度和计算效率. The available data modeling methods mostly depend on quantitative numerical information. But the data modeling with both numerical and categorical data input often has to build multiple sub-models on the basic of combination of categorical variables. It is likely to present unevenly data distribution of sub-models, time-consuming training process and other problems when the multiple categorical variables are input. For the above problems, an adaptive network-based fuzzy inference system with mixed data inputs is proposed. Based on the structure of the adaptive network-based fuzzy inference system, a firing-strength transform matrix and a consequent influence matrix are introduced. The subtractive clustering based on the Gaussian distance is adapted to identify structure of model, and a hybrid learning algorithm is used to train parameters of model. The numerical and categorical data play an important role on the antecedent and consequent parameters of fuzzy rules, and jointly affect the output of model. The simulation experiment analyzes the effect on categorical data to the consequent rules and structure identification to number of fuzzy rules. Comparing with others data modeling with mixed data inputs, the proposed model in this paper has higher prediction accuracy and computational efficiency.
作者 张宇献 郭佳强 钱小毅 王建辉 ZHANG Yu-Xian;GUO Jia-Qiang;QIAN Xiao-Yi;WANG Jian-Hui(School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870;School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870;College of Information Science and Engineering, Northeastern University, Shenyang 110819)
出处 《自动化学报》 EI CSCD 北大核心 2019年第9期1743-1755,共13页 Acta Automatica Sinica
基金 国家自然科学基金(61102124) 辽宁省自然科学基金(2015020064) 辽宁省教育厅项目(LQGD2017035)资助~~
关键词 自适应模糊推理系统 结构辨识 激励强度转移矩阵 后件影响矩阵 混合属性数据 Adaptive network-based fuzzy inference system structure identification firing-strength transform matrix consequent influence matrix mixed attribute data
  • 相关文献

参考文献4

二级参考文献80

  • 1[1]Zadeh L A. Fuzzy sets[J]. Information and Control,1965,8(2):338-353.
  • 2[2]Wang L X. Fuzzy Systems are universal approximators[A]. Proc IEEE Int Conf Fuzzy Systems[C].1992.1163-1170.
  • 3[3]Kosko B. Fuzzy systems as universal approximators[A]. Proc IEEE Int Conf Fuzzy Systems[C].1992.1153-1162.
  • 4[4]Ying M S. Implication operators in fuzzy logic[J]. IEEE Trans on Fuzzy systems,2002,10(1):88-91.
  • 5[5]Lee C-C. Fuzzy logic in control systems: Fuzzy logic controller-Part I,II[J]. IEEE Trans on Systems, Man and Cybernetics,1990,20(2):404-435.
  • 6[6]Filev D P, Yager R R. A generalized defuzzification method via BAD distributoins[J]. Int J of Intelligent Systems,1991,6(4):687-697.
  • 7[7]Wang L X. Universal approximation by hierarchical fuzzy systems[J]. Fuzzy Sets and Systems,1998,93(2):223-230.
  • 8[8]Dickerson J A, Kosko B. Fuzzy function approximation with ellipsoidal rules[J].IEEE Trans on Syst, Man and Cybernetics,1996,26(4):542-560.
  • 9[9]Buckley J J. Universal fuzzy controllers[J]. Automa-tica,1992,28(6):1245-1248.
  • 10[10]Buckley J J. Sugeno type controllers are universal controllers[J].Fuzzy Sets and Systems,1993,53(3):293-303.

共引文献65

同被引文献50

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部