摘要
稳定性是实值、复值、四元数神经网络在众多领域应用中首要关心的问题,针对具有不可微时变时滞的四元数神经网络的全局μ-稳定性问题,提出了在不要求网络可分解情况下的充分性判据;将四元数神经网络整体考虑,通过构造合适的Lyapunov-Krasovskii泛函,运用自由权矩阵和矩阵不等式等技术,获得了所研究网络平衡点的全局μ-稳定性的充分性条件,给出的稳定性判据是四元数线性矩阵不等式表示的,同时将所得结果与已有的结果进行了对比;最后通过一个数值仿真实例验证了结果的有效性.
Stability is the primary concern of real-valued,complex-valued,quaternion-valued neural networks in many applications.In the case where the quaternion-valued neural networks(QVNNs)with non-differential time-varying delays is not required to be separated,the sufficiency criterion of the globalμ-stability problem for networks is proposed.By constructing the appropriate Lyapunov-Krasovskii functional,using the techniques of free-weight matrix and matrix inequality,the sufficient conditions for the globalμ-stability of the equilibrium point of the network under study are obtained.The linear matrix inequalities globalμ-stability criterion is provided in the form of quaternion-valued linear matrix inequality(QVLMI).In addition,the results are compared with the existing results.Finally,a numerical example is also given to illustrate the validity and feasibility of the conclusion.
作者
刘丽缤
游星星
潘和平
LIU Li-bin;YOU Xing-xing;PAN He-ping(College of Finance,Chongqing Technology and Business University,Chongqing 400067China;School of Economics and Management,Chongqing Jiaotong University,Chingqing 400074,China)
出处
《重庆工商大学学报(自然科学版)》
2019年第5期52-57,52-56,共6页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
国家社会科学基金(17BGL231)
研究生教育创新基金项目(CYS18230)资助
关键词
四元数神经网络
不可微时变时滞
全局μ-稳定性
线性矩阵不等式
quaternion-valued neural networks
non-differentiable time-varying delays
globalμ-stability
linear matrix inequality